Skip to main content
Log in

Lattice location and hardness of Ta-implanted Ni3Al

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Implantation of Ta into single crystal Ni3Al was conducted to determine the degree of surface hardening in monolithic alloys in relation to its lattice location. Ta was implanted at 400 keV to doses of 0.07, 0.36, and 2.52 × 1016 cm−2 along the [100] axis of a [100] crystal of Ni3Al at room temperature. Composition versus depth profiles were determined by RBS, and lattice location of Ta was determined by channeling angular yield scans about the [100] axis. The hardness of the surface was measured by ultra-low load indentation. Results show that implantation softens the surface and that the Ta is randomly distributed between Ni and Al sites. Annealing at 1000 °C/1 h significantly reduces the damage and causes preferential occupation of Al sites by Ta, resulting in a slight increase in surface hardness. Further annealing at 1200 °C/0.25 h increases the surface hardness substantially and increases occupation of Al lattice sites to roughly 84%. Results are consistent with a model in which the as-implanted surface is softened by disordering, and subsequent diffusion of Ta to Al sites during thermal treatment causes hardening of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Curwick, Ph.D. Dissertation, University of Minnesota, 1972.

  2. F. Heredia and D. P. Pope, in High-Temperature Ordered Inter-metallic Alloys, II, edited by N.S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 213–220.

    Google Scholar 

  3. R.D. Rawlings and A. Staton-Bevan, J. Mater. Sci. 10, 505 (1975).

  4. K. Aoki and O. Izumi, Phys. Status Solidi (a) 38, 587 (1976).

  5. D.M. Wee and T. Suzuki, Trans. Jpn. Inst. Met. 20, 634 (1979).

  6. D. V. Wee, O. Noguchi, Y. Oya, and T. Suzuki, Trans. Jpn. Inst. Met. 21, 237 (1980).

  7. D. S. Pope and S. S. Ezz, Int. Metals Rev. 29, 136 (1984).

  8. M.K. Miller and J. A. Horton, Scripta Metall. 20, 1125 (1986).

  9. M.K. Miller and J.A. Horton, in High-Temperature Ordered Intermetallic Alloys, II, edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 117–122.

    Google Scholar 

  10. J. Bentley, Proc. 44th Meeting of Electron Microscopy Society of America, Albuquerque, edited by G.W. Bailey (San Francisco Press, San Francisco, CA, 1986), p. 704.

  11. M.K. Miller and J. Bentley, J. Phys. C7, 463 (1986).

    Google Scholar 

  12. H.G. Bohn, R. Schumacher, and R.J. Vianden, in High-Temperature Ordered Intermetallic Alloys, II, edited by N.S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 123–126.

    Google Scholar 

  13. H.G. Bohn, J.M. Williams, J.H. Barrett, and C.T. Liu, in High-Temperature Ordered Intermetallic Alloys, II, edited by N.S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 127–133.

  14. H. Lin, L. E. Seiberling, P. F. Lyman, and D. P. Pope, in High-Temperature Ordered Intermetallic Alloys, II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and 0. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 165–170.

    Google Scholar 

  15. J. H. Barrett, Nucl. Instrum. Methods B30, 546 (1988).

    Article  CAS  Google Scholar 

  16. H. Lin and D.P. Pope, J. Mater. Res. 5, 763–768 (1990).

    Article  CAS  Google Scholar 

  17. D. J. Morrison, J. W. Jones, G. S. Was, A. Mashayekhi, and J. W. Hoffman, in Thin Films: Stresses and Mechanical Properties, edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), pp. 53–58.

    Google Scholar 

  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1984), p. 1.

  19. J. W. Mayer and S.S. Lau, Electronic Materials Science: For Integrated Circuits in Si and GaAs (Macmillan Publishing Co., New York, 1990), pp. 231–232.

  20. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  21. G. S. Was, J. Mater. Res. 5, 1668 (1990).

    Article  CAS  Google Scholar 

  22. L. R. Doolittle, Nucl. Instrum. Methods B9, 344 (1985).

    Article  CAS  Google Scholar 

  23. M. Ahmed and D. I. Potter, Acta Metall. 35, 2341 (1987).

  24. J. Eridon, G. S. Was, and L. Rehn, J. Mater. Res. 3, 626 (1988).

    Article  CAS  Google Scholar 

  25. S. M. Foiles and M. S. Daw, J. Mater. Res. 2, 5 (1987).

    Article  CAS  Google Scholar 

  26. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Was, G.S., Mantl, S. & Oliver, W. Lattice location and hardness of Ta-implanted Ni3Al. Journal of Materials Research 6, 1200–1206 (1991). https://doi.org/10.1557/JMR.1991.1200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1200

Navigation