Skip to main content
Log in

Particle and grain size effects on the dielectric behavior of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The role of particle and grain size on the dielectric behavior of the perovskite relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 [PMN] was investigated. Ultrafine powders of PMN were prepared using a reactive calcination process. Reactive calcination, the process by which morphological changes take place upon reaction of the component powders, produced particle agglomerates less than 0.5 μm. Through milling, these structures were readily broken down to ∼70 nanometer-sized particulates. The highly reactive powders allowed densification as low as 900 °C, but with corresponding grain growth in the micron range. Such grain growth was associated with liquid phase sintering as a result of PbO–Nb2O5 second phase(s) pyrochlore. Sintering, assisted by hot uniaxial pressing, below the temperature of liquid formation of 835 °C, allowed the fabrication of highly dense materials with a grain size less than 0.3 μm. The dielectric and related properties were determined for samples having grain sizes in the range of 0.3 μm to 6 μm. Characteristic of relaxors, frequency dependence (K and loss) and point of T max were found to be related to grain and/or particle size and secondarily to the processing conditions. Modeling of particle size/dielectric behavior was performed using various dielectric properties of 0–3 composites comprised of varying size powder in a polymer matrix. An intrinsic-microdomain perturbation concept was proposed to interpret observed scaling effects of the relaxor dielectric behavior in contrast to normally accepted extrinsic grain boundary models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Smolenskii and A. I. Agranovskaya, Sov. Phys.-Tech. Phys. 3, 1380 (1958).

    CAS  Google Scholar 

  2. G.A. Smolenskii and A. I. Agranovskaya, Sov. Phys.-Solid State 1 (10), 1429 (1959).

    Google Scholar 

  3. T. R. Shrout and J. P. Dougherty, Ceram. Trans., edited by M. Yan and H.C. Ling (Amer. Ceram. Soc, Columbus, OH, 1990), Vol. 8.

  4. S. Nomura and K. Uchino, Ferroelectrics 27, 31–34 (1982).

    Google Scholar 

  5. G. A. Smolenskii, J. Phys. Soc. Jpn. (Suppl.) 28, 26 (1970).

    Google Scholar 

  6. L.E. Cross, Ferroelectrics 76, 241–267 (1987).

    Article  CAS  Google Scholar 

  7. C.A. Randall, A.S. Bhalla, T. R. Shrout, and L.E. Cross, J. Mater. Res. 5, 829 (1990).

    Article  CAS  Google Scholar 

  8. E. Matijevic, Mater. Res. Bull. XII, 18 (1989).

    Article  Google Scholar 

  9. P. Ravindranathan, S. Komarneni, and R. Roy, J. Am. Ceram. Soc. 73 (4), 1024 (1990).

    Article  CAS  Google Scholar 

  10. T. R. Shrout, P. Papet, S. Kim, and G. S. Lee, J. Am. Ceram. Soc. (1990).

  11. S. L. Swartz and T. R. Shrout, Mater. Res. Bull. XVII, 1245 (1982).

    Article  Google Scholar 

  12. J. H. Adair, A. J. Rose, and L.G. McCoy, Advances in Ceramics, edited by K. M. Nair (Am. Ceram. Soc, Columbus, OH, 1984), Vol. II, pp. 142–156.

    Google Scholar 

  13. K. Uchino, “Particle/Grain Size Dependence of Ferroelectricity,” Am. Ceram. Soc. Meeting, Indianapolis, IN (1989).

  14. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. XIII, 525 (1978).

    Article  Google Scholar 

  15. M. Lejeune, Ph.D. Thesis, Université de Limoges, France (1986).

  16. D. A. Payne and L. E. Cross, in Ceramic Microstructures ‘76, edited by R. M. Fulrath and J.A. Park (Westview Press, Boulder, CO, 1977), pp. 584–597.

    Google Scholar 

  17. K. Lichtenecker, Phys. Z. 27, 115 (1926) (in German).

    CAS  Google Scholar 

  18. H. Anderson, C. Tompkins, and F. Frantz, Tech. Rept., ECOM-02450-F, Fort Monmouth, NJ (1967).

    Google Scholar 

  19. R.T. Jacobsen, Proc. Elect. Comp. Conf., 343 (1971).

  20. T. R. Shrout, U. Kumar, M. Megherhi, N. Yang, and S. J. Jang, Ferroelectrics 76, 479 (1987).

    Article  CAS  Google Scholar 

  21. D.N. Huang, Z.W. Yin, and L.E. Cross, Proc. 6th IEEE Int. Symp. Appl., Ferroelectrics, 159 (1986).

  22. A.J. Gorton, J. Chen, H. Chan, D. Smyth, and M.P. Harmer, Proc. 6th IEEE Int. Symp. Appl., Ferroelectrics, 150 (1986).

  23. A. Hilton, Ph.D. Thesis, University of Essex, England (1989).

  24. H.C. Wang and W.A. Schulze, J. Am. Ceram. Soc. 73 (4), 825 (1990).

    Article  CAS  Google Scholar 

  25. N. Yasuda, S. Fujimoto, and H. Terasawa, IEEE Trans. Ultr. Ferro, and Freq. Control 36, 402 (1989).

    Article  CAS  Google Scholar 

  26. B. J. Jin, Z.Y. Yin, X. Q. Wang, and S. H. Hu, Ferroelectrics 93, 391 (1989).

    Article  Google Scholar 

  27. D. Viehland, S. J. Jang, M. Wuttig, and L. E. Cross, Ferroelectrics (to be published).

  28. D.A. Ackerman, D. Moy, R.C. Potter, A.C. Anderson, and W. N. Lawless, Phys. Rev. B 23 (8), 3886 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papet, P., Dougherty, J.P. & Shrout, T.R. Particle and grain size effects on the dielectric behavior of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3. Journal of Materials Research 5, 2902–2909 (1990). https://doi.org/10.1557/JMR.1990.2902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2902

Navigation