Skip to main content
Log in

Investigation of the structure and stability of the Pt/SiC(001) interface

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Auger electron spectroscopy and low energy electron diffraction have been applied to the study of the structure and thermal stability of the Pt/β–SiC(001) interface. The morphology of the interface appears to be governed by the competition among surface diffusion, intermixing, and chemical reaction. An ultrathin Pt layer (≤8 Å thick) deposited on a substrate at low temperature is laterally uniform with some degree of intermixing across the interface. Brief anneals at ≤1000 °C result in aggregation of the Pt into islands interspersed with essentially bare SiC. Higher temperatures lead to reaction of the aggregated Pt to form Pt silicide and release free C. The reaction is signaled by characteristic changes in the Si LVV and C KLL Auger line shapes and by the appearance in LEED of a (2 × 2) pattern (believed to arise from ordered PtSi) and of diffraction rings from oriented polycrystalline graphite. Subsequent deposition of Si and annealing leads to regeneration of SiC by reaction with the free C. These results contrast with those for ultrathin Pt on Si(001) and on α-SiC(0001) which are dominated by the rapid indiffusion of Pt during annealing. A detailed model is presented for the growth and annealing dependence of the Pt/β–SiC(001) interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Papanicolaou, A. Christou, and M. L. Gipe, J. Appl. Phys. 65, 3526 (1989).

    Article  CAS  Google Scholar 

  2. T. C. Chou, J. Mater. Res. 5, 601 (1990).

    Article  CAS  Google Scholar 

  3. A. B. Anderson and Ch. Ravimohan, Phys. Rev. B 38, 974 (1988).

    Article  CAS  Google Scholar 

  4. P. Morgen, M. Szymonski, J. Onsgaard, B. Jorgensen, and G. Rossi, Surf. Sci. 197, 347 (1988).

    Article  CAS  Google Scholar 

  5. G. Rossi, D. Chandesris, P. Roubin, and J. Lecante, Phys. Rev. B 34, 7455 (1986).

    Article  CAS  Google Scholar 

  6. W.S. Yang, S.C. Wu, and F. Jona, Surf. Sci. 169, 383 (1986).

    Article  CAS  Google Scholar 

  7. J. C. Tsang, R. Matz, Y. Yokota, and G.W. Rubloff, J. Vac. Sci. Technol. A 2, 556 (1984).

    Article  CAS  Google Scholar 

  8. R. Matz, R. J. Purtell, Y. Yokota, G.W. Rubloff, and P. S. Ho, J. Vac. Sci. Technol. A 2, 253 (1984).

    Article  CAS  Google Scholar 

  9. G. Rossi, I. Abbati, L. Braicovich, I. Lindau, and W. E. Spicer, Phys. Rev. B 25, 3627 (1982).

    Article  CAS  Google Scholar 

  10. C.A. Crider, J.M. Poate, J.E. Rowe, and T.T. Sheng, J. Appl. Phys. 52, 2860 (1981).

    Article  CAS  Google Scholar 

  11. S. Okada, Y. Kishikawa, K. Oura, and T. Hanawa, Surf. Sci. 100, L457 (1980).

    Article  CAS  Google Scholar 

  12. G. Rossi, Surf. Sci. Repts. 7, 1 (1987).

    Article  CAS  Google Scholar 

  13. J-R. Chen, L-D. Chang, and F-S. Yeh, J. Vac. Sci. Technol. A 7, 1345 (1989).

    Article  CAS  Google Scholar 

  14. V.M. Bermudez, Appl. Surf. Sci. 17, 12 (1983).

    Article  CAS  Google Scholar 

  15. C.S. Pai, CM. Hanson, and S.S. Lau, J. Appl. Phys. 57, 618 (1985).

    Article  CAS  Google Scholar 

  16. W. F. J. Slijkerman, A. E. M. J. Fischer, J. F. van der Veen, I. Ohdomari, S. Yoshida, and S. Misawa, J. Appl. Phys. 66, 666 (1989).

    Article  CAS  Google Scholar 

  17. H. Höchst, D.W. Niles, G.W. Zajac, T. H. Fleisch, B. C. Johnson, and J.M. Meese, J. Vac. Sci. Technol. B 6, 1320 (1988).

    Article  Google Scholar 

  18. V.M. Bermudez, Appl. Phys. Letts. 42, 70 (1983).

    Article  CAS  Google Scholar 

  19. V. M. Bermudez, J. Appl. Phys. 63, 4951 (1988).

    Article  CAS  Google Scholar 

  20. R. Kaplan, Surf. Sci. 215, 111 (1989).

    Article  CAS  Google Scholar 

  21. V. M. Bermudez, J. Appl. Phys. 66, 6084 (1989).

    Article  CAS  Google Scholar 

  22. J. A. Powell, L. G. Matus, and M. A. Kuczmarski, J. Electrochem. Soc. 134, 1558 (1987).

    Article  CAS  Google Scholar 

  23. H.S. Kong, Y.C. Wang, J.T. Glass, and R.F. Davis, J. Mater. Res. 3, 521 (1988).

    Article  CAS  Google Scholar 

  24. N.J. Zheng, U. Knipping, I.S.T. Tsong, W.T. Petuskey, H.S. Kong, and R. F. Davis, J. Vac. Sci. Technol. A 6, 696 (1988).

    Article  CAS  Google Scholar 

  25. L. E. Davis, N. C. MacDonald, P.W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin-Elmer Corp., Eden Prairie, MN, 1978).

    Google Scholar 

  26. M. Mundschau and R. Vanselow, Surf. Sci. 157, 87 (1985).

    Article  CAS  Google Scholar 

  27. J. A. Roth and C. R. Crowell, J. Vac. Sci. Technol. 15, 1317 (1978).

    Article  CAS  Google Scholar 

  28. A.S. Ignatiev, V. G. Mokerov, A.G. Petrova, V.A. Rybin, and V.V. Saraikin, Zh. Tekh. Fiz. 54, 1212 (1984); English transi.: Sov. Phys. Tech. Phys. 29, 695 (1984).

    Google Scholar 

  29. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 11, 577 (1988); J. Vac. Sci. Technol. A 8, 2213 (1990).

    Article  CAS  Google Scholar 

  30. D. Briggs and M. P. Seah, Practical Surface Analysis (Wiley, Chichester, UK, 1983), Chap. 5.

    Google Scholar 

  31. C. Argile and G.E. Rhead, Surf. Sci. Repts. 10, 277 (1989).

    Article  CAS  Google Scholar 

  32. S. Hasegawa, S. Nakamura, N. Kawamoto, H. Kishibe, and Y. Mizokawa, Surf. Sci. 206, L851 (1988).

    Article  CAS  Google Scholar 

  33. M. Liehr, F. K. LeGoues, G.W. Rubloff, and P. S. Ho, J. Vac. Sci. Technol. A 3, 983 (1985).

    Article  Google Scholar 

  34. S. Nakanishi, H. Tokutaka, K. Nishimori, S. Kishida, and N. Ishihara, Appl. Surf. Sci. 41/42, 44 (1989).

    Article  Google Scholar 

  35. R. Kaplan and T.M. Parrill, Surf. Sci. 165, L45 (1986).

    Article  CAS  Google Scholar 

  36. G.V Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), Chap. II.

    Book  Google Scholar 

  37. Crystal Data — Determinative Tables, 3rd ed., Vol. II: Inorganic Compounds, edited by J. D. H. Donnay and H. M. Ondik (National Bureau of Standards, Washington, DC, 1973).

  38. R. J. Nemanich, T.W. Sigmon, N.M. Johnson, M.D. Moyer, and S.S. Lau, in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by J. F. Gibbons, L. D. Hess, and T.W. Sigmon (North-Holland, New York, 1981), p. 541.

    Google Scholar 

  39. J. J. Bellina, Jr. and M.V. Zeller, in Novel Refractory Semiconductors, edited by D. Emin, T. L. Aselage, and C. Wood (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermudez, V.M., Kaplan, R. Investigation of the structure and stability of the Pt/SiC(001) interface. Journal of Materials Research 5, 2882–2893 (1990). https://doi.org/10.1557/JMR.1990.2882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2882

Navigation