Skip to main content
Log in

Physical properties of amorphous silicon-carbon alloys produced by different techniques

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Results of a study of compositional, optical, electrical, and structural properties of hydrogen amorphous silicon carbide (a-SiC:H) prepared, respectively, by glow-discharge (GD) and reactive sputtering (SP) techniques at power densities varying between 1.25 · 10−2 and 1.25 · 10−1 W · cm−2 for GD samples are presented. Measurements are reported on the composition, optical and IR spectroscopy, and on the temperature dependence of electrical conductivity. All experimental observations suggest that the power density only slightly affects the physical properties of GD silicon-rich samples, whereas those of the carbon-rich SP samples depend more strongly on this deposition parameter. Finally, it is shown that the GD technique can provide films with better characteristics, whereas samples of similar composition prepared by sputtering have higher compositional disorder and are more inhomogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kuwano, M. Ohnishi, H. Nishiwaski, S. Tsuda, T. Fukatsu, K. Enomoto, Y. Nakashima, and H. Tazni, 16th IEEE PV Spec Conference, San Diego, CA (IEEE, New York, 1982), p. 1331.

    Google Scholar 

  2. H. Munekata and H. Kukimoto, Appl. Phys. Lett. 42, 432 (1983).

    Article  CAS  Google Scholar 

  3. J. Pezzin, I. Solomon, B. Bourdon, J. Fontenille, and E. Ligeon, Thin Solid Films 62, 327 (1979).

    Article  Google Scholar 

  4. M.P. Schmidt, J. Bullot, M. Gauthier, P. Cordier, I. Solomon, and H. Tran-Quoc, Philos. Mag. B 51, 581 (1985).

    Article  CAS  Google Scholar 

  5. D. A. Anderson and W. E. Spear, Philos. Mag. B 35, 1 (1977).

    Article  CAS  Google Scholar 

  6. J. Bullot and M. P. Schmidt, Phys. Status Solidi (B) 143, 345 (1987).

    Article  CAS  Google Scholar 

  7. M.P. Schmidt, I. Solomon, H. Tran-Quoc, and J. Bullot, J. Non-Cryst. Solids 77–78, 849 (1985).

    Article  Google Scholar 

  8. F. Demichelis, G. Kaniadakis, A. Tagliaferro, and E. Tresso, Appl. Opt. 26, 1717 (1987).

    Article  Google Scholar 

  9. A. H. Mahan, B. von Roedern, D. L. Williamson, and A. Madan, J. Appl. Phys. 57, 8 (1985).

    Article  Google Scholar 

  10. W. Paul and D. Anderson, Solar Energy Materials 5, 229 (1981).

    Article  CAS  Google Scholar 

  11. J. Robertson, Adv. Phys. 35, 4, 317 (1986).

    Article  Google Scholar 

  12. M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).

    Article  CAS  Google Scholar 

  13. E. C. Freeman and W. Paul, Phys. Rev. B 18, 4288 (1978).

    Article  CAS  Google Scholar 

  14. B. Dishler, Proc. 7th Int. Symp. on Plasma Chemistry (Eindhoven, July 1985), Vol. I, p. 45.

  15. F. Demichelis, G. Kaniadakis, E. Mezzetti, P. Mpawenayo, A. Tagliaferro, E. Tresso, P. Rava, and G. Delia Mea, Nuovo Ci-mento 9D, 393 (1987).

    Article  Google Scholar 

  16. T. D. Moustakas, Semiconductors and Semimetals, edited by J. I. Pankove (Academic Press, New York, 1984), Vol. 21, p. 55.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, A., Demichelis, F., Kaniadakis, G. et al. Physical properties of amorphous silicon-carbon alloys produced by different techniques. Journal of Materials Research 5, 2877–2881 (1990). https://doi.org/10.1557/JMR.1990.2877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2877

Navigation