Skip to main content
Log in

Electrical resistivity and hydrogen-physisorption behavior of potassium-graphite intercalation compounds in the course of reactions with ammonia, water, and oxygen

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrical resistivity of potassium-graphite intercalation compounds (K–GICs) was measured in the course of reactions with ammonia, oxygen, water, etc, The hydrogen absorption behavior at 77 K was also investigated on K–GICs before and after the reactions. The electrical resistivity of KC8 increased by reactions with ammonia, furan, and water vapor, whereas almost no change was observed in the case of the reaction with oxygen. Molecules of ammonia, furan, and water are considered to penetrate into the KC8 interlayers, while oxygen draws potassium from interlayer spaces toward the surface with resultant potassium-diluted mixed stage compounds. The hydrogen absorption isotherms of K(NH3)xC31 (0 ≤ x ≤ 2.65) at 77 K showed that the saturated amount of absorbed hydrogen, (H2/K)sat, decreased linearly with increasing ammonia content, x, When x went up to 2, (H2/K)sat became zero. Similar behavior in the degradation of the hydrogen absorption capacity of K(H2O)xC25 (0 ≤ x ≤ 1.3) was observed. Contrary to such behavior, partially oxidized KC24 could not absorb hydrogen gas. These facts are also explained by taking into account the fact that ammonia and water molecules penetrate K–GICs, while oxygen draws potassium atoms toward the surface, as predicted from the electrical resistivity measurements. Successive oxidation and heat-treatment processes made KC8 more able to absorb hydrogen, while similar processes of ammoniation and hydration followed by heat-treatment did not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Inagaki, J. Mater. Res. 4, 1560 (1989).

    Article  CAS  Google Scholar 

  2. K. Watanabe, M. Soma, T. Ohnishi, and K. Tamaru, Nature Phys. Sci. 233, 160 (1971).

    Article  CAS  Google Scholar 

  3. K. Watanabe, T. Kondow, M. Soma, T. Ohnishi, and K. Tamaru, Proc. R. Soc. London A333, 51 (1973).

    Google Scholar 

  4. T. Terai and Y. Takahashi, J. Nucl. Sci. Technol. 18, 643 (1981).

    Article  CAS  Google Scholar 

  5. T. Terai and Y. Takahashi, Carbon 22, 91 (1984).

    Article  CAS  Google Scholar 

  6. N. Daumas and A. Hérold, Bull. Soc. Chim. Fr. 1971, No. 5, 1598 (1971).

    Google Scholar 

  7. N. Akuzawa, T. Fujisawa, T. Amemiya, and Y. Takahashi, Synth. Met. 7, 57 (1983).

    Article  CAS  Google Scholar 

  8. N. Akuzawa, T. Amemiya, and Y. Takahashi, Carbon 24, 295 (1986).

    Article  CAS  Google Scholar 

  9. D. E. Bergbreiter and J. M. Killough, J. Chem. Soc. Chem. Commun. 913 (1976).

  10. D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc. 100, 2126 (1978).

    Article  CAS  Google Scholar 

  11. R. Schlögl and H. P. Boehm, Carbon 22, 351 (1984).

    Article  Google Scholar 

  12. H.P. Boehm and R. Schlögl, Carbon 25, 583 (1987).

    Article  CAS  Google Scholar 

  13. L.B. Ebert, Carbon 23, 585 (1985).

    Article  CAS  Google Scholar 

  14. L. B. Ebert and J. C. Scanlon, Mater. Res. Bull. XXIII, 413 (1988).

    Article  Google Scholar 

  15. L. B. Ebert, L. Matty, D. R. Mills, and J. C. Scanlon, Mater. Res. Bull. XV, 251 (1980).

    Article  Google Scholar 

  16. E. McRae, D. Billaud, J. F. Marêché, and A. Hérold, Physica B 99, 489 (1980).

    Article  CAS  Google Scholar 

  17. H.H. Huang, Y. B. Fan, S.A. Solin, J.M. Zhang, P.C. Eklund, J. Heremans, and G.G. Tibetts, Solid State Commun. 64, 443 (1987).

    Article  CAS  Google Scholar 

  18. N. Akuzawa, S. Takei, M. Yoshioka, and Y. Takahashi, to be published in Proc. Carbone 90 Paris.

  19. N. Akuzawa, S. Kawahara, H. Sakuno, T. Amemiya, and Y. Takahashi, Carbon 26, 104 (1988).

    Article  CAS  Google Scholar 

  20. J. Jegoudez and R. Setton, Synth. Met. 7, 85 (1983).

    Article  CAS  Google Scholar 

  21. F. Beguin and R. Setton, J. Chem. Soc. Chem. Commun. 1976, 611 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akuzawa, N., Amari, Y., Nakajima, T. et al. Electrical resistivity and hydrogen-physisorption behavior of potassium-graphite intercalation compounds in the course of reactions with ammonia, water, and oxygen. Journal of Materials Research 5, 2849–2853 (1990). https://doi.org/10.1557/JMR.1990.2849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2849

Navigation