Skip to main content
Log in

Ultralow-load indentation hardness and modulus of diamond films deposited by hot-filament-assisted CVD

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond films, ranging in thickness to approximately 35 µm, were grown on Si(100) substrates using hot-filament-assisted CVD. Two different CH4:H2 ratios were employed during deposition, and the effects on the film morphology and ultralow-load indentation hardness and modulus were investigated. Films deposited from a single, linear filament exhibited a nonuniform deposition thickness profile that can be described by a simple exponential function. Films deposited at lower methane concentrations, 0.11% CH4 in H2, had larger crystallite sizes of ~5–8 µm, an average hardness of 31 GPa, and an average modulus of 541 GPa. A higher CH4 concentration of 0.99% in H2 resulted in the formation of finer crystallites of approximately 0.5 µm, an average hardness of 65 GPa, and an average modulus of 875 GPa. While these values lie on the low end or outside of the range reported for single crystal diamond, this study has demonstrated that CVD diamond films can be synthesized with ultrahigh or near ultrahigh hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Ditchburn, Optica Acta 29, 355 (1982).

    Article  Google Scholar 

  2. R. F. Davis, Z. Sitar, B. E. Williams, H. S. Kong, H. J. Kim, J.W. Palmour, J. A. Edmond, J. Ryu, J.T. Glass, and C. H. Carter, Jr., Mater. Sci. Eng. B1, 77 (1988).

    Article  Google Scholar 

  3. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  4. K. E. Spear, J. Am. Ceram. Soc. 72, 171 (1989).

    Article  CAS  Google Scholar 

  5. A. R. Badzian and R. C. DeVries, Mater. Res. Bull. 23, 385 (1988).

    Article  CAS  Google Scholar 

  6. R. Messier, A. R. Badzian, T. Badzian, K. E. Spear, P. Bachmann, and R. Roy, Thin Solid Films 153, 1 (1987).

    Article  CAS  Google Scholar 

  7. C.E. Byvik, P. Hobsen, A.M. Buoncristiani, S. Albin, and V. Lakdawala, 2nd Annual Diamond Technology Initiative Seminar, SDIO/IST–ONR, 7–8 July 1987.

  8. D.T. Morelli, C. P. Beetz, and T. A. Perry, J. Appl. Phys. 64, 3063 (1988).

    Article  CAS  Google Scholar 

  9. C. P. Beetz and T. A. Perry, General Motors Research Publication GMR-6093, November 14, 1987.

  10. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 595 (1983).

    Google Scholar 

  11. M. E. O’Hern, C. J. McHargue, R. E. Clausing, W. C. Oliver, and R. H. Parrish, in Technology Update on Diamond Films, edited by R. P. H. Chang, D. Nelson, and O. Hiraki (Materials Research Society, Pittsburgh, PA, 1989), p. 131.

    Google Scholar 

  12. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  13. T. A. Perry and C.P. Beetz, Jr., Proc. SPIE 1055, 152 (1989).

    Article  CAS  Google Scholar 

  14. X. X. Bi, P. C. Eklund, J. G. Zhang, A. M. Rao, T. A. Perry, and C. P. Beetz, Jr., Proc. SPIE 1146, 192 (1989).

    Article  CAS  Google Scholar 

  15. T. A. Perry and C.P. Beetz, General Motors Research Publication GMR-6370, 16 July 1988.

  16. P. J. Dean, Phys. Rev. 139, A588 (1965).

    Article  Google Scholar 

  17. H. B. Dyer, F. A. Raal, L. DuPreez, and J. H. N. Loubser, Philos. Mag. 11, 763 (1965).

    Article  CAS  Google Scholar 

  18. A.M. Stoneham, Solid State Commun. 21, 339 (1977).

    Article  CAS  Google Scholar 

  19. A.T. Collins, J. Phys. C 11, 1957 (1978).

    Article  CAS  Google Scholar 

  20. A.T. Collins, J. Phys. C 11, 2453 (1978).

    Article  CAS  Google Scholar 

  21. A.T. Collins, J. Phys. C 14, 289 (1981).

    Article  CAS  Google Scholar 

  22. A.T. Collins, J. Szechi, and S. Tavender, J. Phys. C 21, L161 (1988).

    Article  CAS  Google Scholar 

  23. G. Davies and C. M. Penchina, Proc. R. Soc. London, Ser. A 338, 359 (1974).

    Article  CAS  Google Scholar 

  24. J. D. J. Ross, Thin Solid Films 148, 171 (1987).

    Article  CAS  Google Scholar 

  25. H. Tsai and D. B. Bogy, J. Vac. Sci. Technol. A 5, 3287 (1987).

    Article  CAS  Google Scholar 

  26. S. Hoshino, K. Fujii, N. Shohata, H. Yamaguchi, Y. Tsukamoto, and M. Yanagisawa, J. Appl. Phys. 65, 1918 (1989).

    Article  CAS  Google Scholar 

  27. C. A. Brookes, Nature 228, 660 (1970).

    Article  CAS  Google Scholar 

  28. T. N. Loladze, G.V. Bokuchava, and G.E. Davydova, Industrial Laboratory 33, 1187 (1967).

    Google Scholar 

  29. H. J. McSkimim and P. Andreatch, J. Appl. Phys. 43, 985 (1972).

    Article  Google Scholar 

  30. M. H. Grimsditch and A. K. Ramdas, Phys. Rev. B 11, 3139 (1975).

    Article  CAS  Google Scholar 

  31. C.P. Beetz, D.T. Morelli, and T. A. Perry, 1st Int. Conf. on The New Diamond Science and Technology, Tokyo, Japan, 24–26 October 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beetz, C.P., Cooper, C.V. & Perry, T.A. Ultralow-load indentation hardness and modulus of diamond films deposited by hot-filament-assisted CVD. Journal of Materials Research 5, 2555–2561 (1990). https://doi.org/10.1557/JMR.1990.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2555

Navigation