Skip to main content
Log in

High growth rate diamond synthesis in a large area atmospheric pressure inductively coupled plasma

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A study of diamond synthesis in an atmospheric pressure inductively coupled argon-hydrogen-methane plasma is presented. The plasma generated has an active area of 20 cm2 and a free stream temperature of approximately 5000 K. Deposition experiments lasting 1 h in duration have been performed in both stagnation flow and flat plate parallel flow geometries. The diamond film deposited in both configurations are nonuniform yet fairly reproducible. The variation in the growth rates at various regions of the substrate is attributed to the variation in the surface atomic hydrogen flux. Growth rates are as high as 50 µm/h, in regions of the substrate where the atomic hydrogen flux is expected to be large. Little or no growth is observed in regions where the atomic hydrogen is expected to recombine within the thermal boundary layer before arriving at the surface. Individual particles are analyzed by micro-Raman spectroscopy. Large (50 µm) size well-faceted particles show little evidence of non-diamond carbon content and are found to be under a state of compression, displaying shifts in the principal phonon mode as great as 3 cm–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Koshino, K. Kurihara, M. Kawarada, and K. Sasaki, in Extended Abstracts from the Spring Meeting of the Materials Research Society, April 5–9, 1988, Reno, NV (Materials Research Society, Pittsburgh, PA), p. 85.

  2. F. Akatsuka, Y. Hirose, and K. Komaki, Jpn. J. Appl. Phys. 27, L1600 (1988).

    Article  CAS  Google Scholar 

  3. S. Matsumoto, in Extended Abstracts from the Spring Meeting of the Materials Research Society, April 5–9, 1988, Reno, NV (Materials Research Society, Pittsburgh, PA), p. 119.

  4. S. Matsumoto, H. Hino, and T. Kobayashi, Appl. Phys. Lett. 51, 737 (1987).

    Article  CAS  Google Scholar 

  5. Y. Hirose, Abstracts of the 1st Int. Conf. on New Diamond Sci. and Tech. (Japan New Diamond Forum), p. 38, October 24–26, Tokyo, Japan (1988).

    Google Scholar 

  6. J. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  7. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  8. N. Ohtake and M. Yoshikawa, J. Electrochem. Soc. 137 (1990).

  9. T. Owano and M. Gordon (unpublished research).

  10. M. Mitchner and C. H. Kruger, Partially Ionized Gases (J. Wiley and Sons, New York, 1973), p. 47.

    Google Scholar 

  11. T. Owano, M. Gordon, and C. H. Kruger, submitted to Physics of Fluids B (1990).

  12. B.V. Spitsyn, L. L. Bouilov, and B.V. Derjaguin, J. Cryst. Growth 52, 219 (1981).

    Article  CAS  Google Scholar 

  13. B.V. Spitsyn and L. L. Bouilov, in Extended Abstracts No. 15, Diamond and Diamond-Like Materials Synthesis, edited by G. H. Johnson, A. R. Badzian, and M.W. Geis (Materials Research Society, Pittsburgh, PA, 1988), p. 3.

    Google Scholar 

  14. D.E. Rosner, Annual Rev. Mater. Sci. 2, 573 (1972).

    Article  CAS  Google Scholar 

  15. W. L. Hsu, J. Vac. Sci. Technol. A6, 1803 (1988).

    Article  Google Scholar 

  16. M. Frenklach and K. E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  17. D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).

    Article  CAS  Google Scholar 

  18. M. Frenklach, J. Appl. Phys. 65, 5142 (1989).

    Article  CAS  Google Scholar 

  19. D. G. Goodwin, in Extended Abstracts No. 19, Technology Update on Diamond Films, edited by R. P. H. Chang, D. Nelson, and A. Hiraki (Materials Research Society, Pittsburgh, PA, 1989), p. 153.

    Google Scholar 

  20. E. Meeks, M. A. Cappelli, and R. J. Kee (unpublished research).

  21. C. R. Vidal, J. Cooper, and E.W. Smith, Astro. J. Suppl. Ser. No. 214, 25, 37 (1973).

    Article  CAS  Google Scholar 

  22. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  23. H. Boppart, J. van Straaten, and I. F. Silvera, Phys. Rev. B 32, 1423 (1985).

    Article  CAS  Google Scholar 

  24. Engineering Properties of Selected Ceramic Materials, edited by J. F. Lynch, C. G. Ruderer, and W. H. Duckworth (The American Ceramic Society, Inc., Columbus, OH, 1966).

  25. W. F. Sherman, J. Phys. C: Solid State Phys. 18, 1973 (1985).

    Article  Google Scholar 

  26. See, for example, the semi-empirical expression for the binary diffusion coefficient as given by J. P. Holman in Heat Transfer, 7th ed. (McGraw-Hill, New York, 1990), p. 601.

  27. D. L. Baulch, D. D. Drysdale, D. G. Home, and A. C. Lloyd, Evaluated Kinetic Data for High Temperature Reactions, Vol. I, Homogeneous Gas Phase Reactions of the H2–O2 System (Butterworth’s, London, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelli, M.A., Owano, T.G. & Kruger, C.H. High growth rate diamond synthesis in a large area atmospheric pressure inductively coupled plasma. Journal of Materials Research 5, 2326–2333 (1990). https://doi.org/10.1557/JMR.1990.2326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2326

Navigation