Skip to main content
Log in

Methyl versus acetylene as diamond growth species

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have modeled plasma-assisted diamond growth on substrates placed in a high velocity 1-dimensional flow. The gas consisted of methane or acetylene injected into a flow of partially dissociated hydrogen gas at 800 °C. Diamond is formed only near the injector. More diamond is formed when methane is the additive, and Raman spectra show that the quality of the diamond films is also higher when methane is the additive. The model, which includes detailed chemistry, convection, concentration diffusion, and thermal diffusion, shows that with this experimental arrangement only methane and methyl radicals are present in significant quantities when methane is added, while only acetylene is present when acetylene is added. We conclude that (1) Diamond films can be grown directly from methyl radicals (or, possibly, from methane) and from acetylene. This suggests that a variety of hydrocarbons could act as growth species. (2) An environment containing methane and methyl is much more effective for growing diamond films than one containing acetylene. (3) The quality of the diamond film depends on the identity of the growth species, with acetylene producing lower quality films than methyl (or methane). (4) The fall-off in diamond formation with distance from the injector is due to destruction of species crucial to diamond growth on the silicon substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.V. Derjaguin and D.V. Fedoseev, Sci. Am. 233, 102 (1976).

    Article  Google Scholar 

  2. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21, 183 (1982).

    Article  CAS  Google Scholar 

  3. M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986).

    Article  CAS  Google Scholar 

  4. M. Tsuda, M. Nakajima, and S. Oikawa, Jpn. J. Appl. Phys. 26, L527 (1987).

    Article  CAS  Google Scholar 

  5. D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).

    Article  CAS  Google Scholar 

  6. S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990).

    Article  CAS  Google Scholar 

  7. T. Kawato and K. Kondo, Jpn. J. Appl. Phys. 26, 1429 (1987).

    Article  CAS  Google Scholar 

  8. F. G. Celii, P. E. Pehrsson, H-t. Wang, and J. E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Article  CAS  Google Scholar 

  9. F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031 (1989).

    Article  CAS  Google Scholar 

  10. F. G. Celii, P. E. Pehrsson, H. Wang, H. H. Nelson, and J. E. Butler, In-situ detection of gas phase species in the filament assisted diamond growth environment, Advances in Laser Sciences IV, AIP Conference Proceedings, edited by W. C. Stwalley and J. Gole (to be published).

  11. Y. Matsui, A. Yuuki, M. Sahara, and Y. Hirose, Jpn. J. Appl. Phys. 28, 1718 (1989).

    Article  CAS  Google Scholar 

  12. S.J. Harris, A.M. Weiner, and Thomas A. Perry, Appl. Phys. Lett. 53, 1605 (1988).

    Article  CAS  Google Scholar 

  13. S. J. Harris and A. M. Weiner, J. Appl. Phys. 67, 6520 (1990).

    Article  CAS  Google Scholar 

  14. U. Meier, K. Kohse-Hoinghaus, L. Schafer, and C. Klages, Appl. Opt. (submitted).

  15. S. J. Harris, J. Appl. Phys. 65, 3044 (1989).

    Article  CAS  Google Scholar 

  16. L. R. Martin and M.W. Hill, Appl. Phys. Lett. 55, 2248 (1989).

    Article  CAS  Google Scholar 

  17. L. R. Martin and M.W. Hill, J. Mater. Sci. Lett. 9, 621 (1990).

    Article  CAS  Google Scholar 

  18. A. Sepehrad, R.M. Marshall, and H. Purnell, Int. J. Chem. Kinetics 11, 411 (1979).

    Article  CAS  Google Scholar 

  19. M. Bourene, O. Dutuit, and J. Le Calve, J. Chem. Phys. 63, 1668 (1975).

    Article  CAS  Google Scholar 

  20. M. Smooke, J. Comput. Phys. 48, 72 (1982).

    Article  CAS  Google Scholar 

  21. B. J. Wood and H. Wise, J. Phys. Chem. 66, 1049 (1962).

    Article  CAS  Google Scholar 

  22. S. P. Chauhan, J. C. Angus, and N. C. Gardner, J. Appl. Phys. 47, 4746 (1976).

    Article  CAS  Google Scholar 

  23. S. J. Harris and A. M. Weiner, Appl. Phys. Lett. 55, 2179 (1989).

    Article  CAS  Google Scholar 

  24. S.J. Harris, D.N. Belton, A.M. Weiner, and S.J. Schmieg, J. Appl. Phys. 66, 5353 (1989).

    Article  CAS  Google Scholar 

  25. A.M. Dean, J. Phys. Chem. 94, 1432 (1990).

    Article  CAS  Google Scholar 

  26. M.S.B. Munson and R.C. Anderson, Carbon 1, 51 (1963).

    Article  CAS  Google Scholar 

  27. S. J. Harris and A. M. Weiner, Annu. Rev. Phys. Chem. 36, 31 (1985).

    Article  CAS  Google Scholar 

  28. M. Frenklach, D.W. Clary, W.C. Gardiner, and S.E. Stein, in Twentieth Symposium (International) on Combustion (The Combustion Institute, Seattle, WA, 1985), p. 887.

    Google Scholar 

  29. M. Frenklach, J. Appl. Phys. 65, 5142 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, S.J., Martin, L.R. Methyl versus acetylene as diamond growth species. Journal of Materials Research 5, 2313–2319 (1990). https://doi.org/10.1557/JMR.1990.2313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2313

Navigation