Skip to main content
Log in

The spontaneous polarization as evidence for lithium disordering in LiNbO3

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ferroelectric to paraelectric phase transition in lithium niobate is examined. The present study focuses on the microscopic mechanism for this phase transition. Literature reports that give insight into this mechanism are reviewed. Two alternate mechanisms for this second order transition have been discussed previously. The phase transition has been proposed to occur by either (a) cooperative displacement of Li ions or (b) statistical disordering of Li between two octahedral sites in the structure. The present study develops a general Landau expression for the second order phase transition. The spontaneous polarization of the lattice is used as an indicator of the extent of transformation. Then both displacement and disordering models are explored. These are compared with the observed spontaneous polarization data. It is concluded that the spontaneous polarization data are indicative of a Li disordering model, rather than a Li displacement model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Abouelleil and F. J. Leonberger, J. Am. Ceram. Soc. 72, 1311–1321 (1989).

    Article  CAS  Google Scholar 

  2. R. S. Weis and T. K. Gaylord, Appl. Phys. A37, 191–203 (1985).

  3. C. S. Tsai, Jpn. J. Appl. Phys. 19 (Suppl. 1), 661–665 (1980).

    Article  Google Scholar 

  4. W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045–1054 (1968).

    Article  CAS  Google Scholar 

  5. R. C. Miller and A. Savage, Appl. Phys. Lett. 9, 169–171 (1966).

    Article  CAS  Google Scholar 

  6. J. G. Bergmann, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, and R. G. Smith, Appl. Phys. Lett. 12, 92–94 (1968).

    Article  Google Scholar 

  7. J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, J. Appl. Phys. 42, 1846–1851 (1971).

    Article  CAS  Google Scholar 

  8. R. L. Holman, “Novel Uses of Gravimetry in the Processing of Crystalline Ceramics”, in Materials Science Research (Plenum, New York, 1979), Vol. 2.

  9. S. G. Boyer and D. P. Birnie, III, “Investigation of the Nb-Rich Phase Boundary of LiNbO3“, Ceramics and Inorganic Crystals for Optics, Electro-Optics and Non-Linear Conversion, 73–80, SPIE Proc. 968 (1988).

  10. P. Lerner, C. Legras, and J. P. Dugas, J. Cryst. Growth 3, 231– 235 (1968).

    Article  Google Scholar 

  11. H. M. O’Bryan, P. K. Gallagher, and C. D. Brandie, J. Am. Ceram. Soc. 68, 493–496 (1985).

    Article  Google Scholar 

  12. G. E. Peterson and J. R. Carruthers, J. Solid State Chem. 1, 98–99 (1969).

    Article  CAS  Google Scholar 

  13. L. O. Svaasand, M. Ericksrud, G. Nakken, and A. P. Grande, J. Cryst. Growth 22, 230–232 (1974).

    Article  CAS  Google Scholar 

  14. B. A. Scott and G. Burns, J. Am. Ceram. Soc. 55, 225–230 (1972).

    Article  CAS  Google Scholar 

  15. D. P. Birnie, III, “Model for the Ferroelectric Transition in Nonstoichiometric LiNbO3 and LiTaO3“ (to be published).

  16. S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, J. Phys. Chem. Solids 27, 1019–1026 (1966).

    Article  CAS  Google Scholar 

  17. J. L. Servoin and F. Gervais, Ferroelectrics 25, 609–612 (1980).

    Article  CAS  Google Scholar 

  18. M. E. Lines, Phys. Rev. B2, 698–705 (1970).

  19. M. R. Chowdhury, G. E. Peckham, and D. H. Saunderson, J. Phys. C 11, 1671–1683 (1978).

    Article  CAS  Google Scholar 

  20. Y. Okamoto, P. Wang, and J. F. Scott, Phys. Rev. B32, 6787–6792 (1985).

  21. J. L. Servoin and F. Gervais, Solid State Commun. 31, 387–391 (1979).

    Article  CAS  Google Scholar 

  22. S. V. Ivanova, V. S. Gorelik, and B. A. Strukov, Ferroelectrics 21, 563–564 (1978).

    Article  CAS  Google Scholar 

  23. A. Jayaraman and A. A. Ballman, J. Appl. Phys. 60, 1208–1210 (1986).

    Article  CAS  Google Scholar 

  24. G. A. Samara, Ferroelectrics 73, 145–159 (1987).

    Article  CAS  Google Scholar 

  25. B. S. Umarov, J. F. Vetelino, N. S. Abdullaev, and A. A. Anikiev, Solid State Commun. 36, 465–468 (1980).

    Article  CAS  Google Scholar 

  26. I. Tomeno and S. Matsumura, J. Phys. Soc. of Japan 56, 163–177 (1987).

    Article  CAS  Google Scholar 

  27. A. M. Glass, Phys. Rev. 172, 564–571 (1968).

    Article  CAS  Google Scholar 

  28. S. C. Abrahams, E. Buehler, W. C. Hamilton, and S. J. Laplaca, J. Phys. Chem. Solids 34, 521–532 (1973).

    Article  CAS  Google Scholar 

  29. E. J. Samuelsen and A. P. Grande, Z. Phys. B24, 207–210 (1976).

  30. A. F. Penna, A. Chaves, and S. P. S. Porto, Solid State Commun. 19, 491–494 (1976).

    Article  CAS  Google Scholar 

  31. C. Raptis, Phys. Rev. B38, 10007–10019 (1988).

  32. I. Tomeno and S. Matsumura, Phys. Rev. B38, 606–614 (1988).

  33. M. Zhang and J. F. Scott, Phys. Rev. B34, 1880–1883 (1986).

  34. C. N. R. Rao and K. J. Rao, Phase Transitions in Solids (McGraw-Hill, New York, 1978).

    Google Scholar 

  35. F. A. Kroger, The Chemistry of Imperfect Crystals (North Holland, Amsterdam, 1964).

    Book  Google Scholar 

  36. D. P. Birnie, III, “Determination of the Lithium Frenkel Energy in Lithium Tantalate”, submitted to J. Appl. Phys.

  37. W. L. Bragg and E. J. Williams, Proc. R. Soc. London A145, 699– 730 (1934).

  38. A. S. Sonin and L. B. Lomova, Sov. Phys. Solid State 9, 2607– 2609 (1968).

    Google Scholar 

  39. S. C. Abrahams and P. Marsh, Acta Cryst. B42, 61–68 (1986).

  40. D. M. Smyth, Ferroelectrics 50, 93–102 (1983).

    Article  Google Scholar 

  41. Y. Limb, K. W. Cheng, and D. M. Smyth, Ferroelectrics 38, 813– 816 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnie, D.P. The spontaneous polarization as evidence for lithium disordering in LiNbO3. Journal of Materials Research 5, 1933–1939 (1990). https://doi.org/10.1557/JMR.1990.1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1933

Navigation