Skip to main content
Log in

Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laser-heated float zone growth was used to study the directional solidification behavior of Bi–Sr–Ca–Cu–O superconductors. The phases that solidify from the melt, their morphology, and their composition are altered by growth rate. Highly textured microstructures are achieved by directional solidification at all growth rates. The superconducting phase is found always to have the composition Bi2.5Sr2CaCu2.2Oy when grown from boules with composition 2:2:1:2 (BiO1.5:SrO:CaO:CuO). Planar growth fronts of Bi2.5Sr2CaCu2.2Oy are observed when the temperature gradient divided by the growth rate (G/R) is larger than 3 ⊠ 1011 K-s/m2 in 2.75 atm oxygen. Thus, the 2212 compound was observed to solidify directly from the melt at the slowest growth rates used in this study. Measurement of the steady-state liquid zone composition indicates that it becomes bismuth-rich as the growth rate decreases. Dendrites of the primary solidification phase, (Sr1−xCax)14Cu24Oy, form in a matrix of Bi2.5Sr2CaCu2.2Oy when G/R is somewhat less than 3 ⊠ 1011 K-s/m2. Observed microstructures are consistent with a peritectic relationship among Bi2.5Sr2CaCu2.2Oy, (Sr1−xCax)14Cu24Oy (x = 0.4), and a liquid rich in bismuth at elevated oxygen pressure. At lower values of G/R, Sr3Ca2Cu5Oy is the primary solidification phase and negligible Bi2.5Sr2CaCu2.2Oy forms in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone, N. J. Zaluzec, B. Flandermeyer, O. F. deLima, M. Hong, J. Kwo, and S. H. Lion, J. Appl. Phys. 62 (12), 4821–4828 (1987).

    Article  CAS  Google Scholar 

  2. D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61 (2), 219–222 (1988).

    Article  CAS  Google Scholar 

  3. J. Mannhart, P. Chaudhari, D. Dimos, C. C. Tsuei, and T. R. McGuire, Phys. Rev. Lett. 61 (21), 2476–2479 (1988).

    Article  CAS  Google Scholar 

  4. J. S. Haggerty and W. P. Menashi, NASA, Contract No. NAS3–13479 (February 1971).

  5. J. S. Haggerty, W. P. Menashi, and J. F. Wenckus, “Methods of Forming Refractory Fibers by Laser Energy,” U. S. Patent No. 3944640, March 1976.

  6. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kanemlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52 (24), 2074–2076 (1988).

    Article  CAS  Google Scholar 

  7. M. Murakami, M. Marita, K. Doi, and K. Miyamoto, J. Appl. Phys., preprint (1989).

  8. R. S. Feigelson, D. Gazit, D. K. Fork, and T. H. Geballe, Science 240, 1642–1645 (1988).

    Article  CAS  Google Scholar 

  9. S. Takekawa, H. Nozaki, A. Umizone, K. Kosuda, and M. Kobayashi, J. Cryst. Growth 92, 687 (1988).

    Article  CAS  Google Scholar 

  10. H. D. Brody, J. S. Haggerty, M. J. Cima, M. C. Flemings, R. L. Barns, M. Gyorgy, D. W. Johnson, W. W. Rhodes, W. A. Sunder, and R. A. Laudise, J. Cryst. Growth 96, 225–233 (1989).

    Article  CAS  Google Scholar 

  11. Y. Shiohara, M. Nakagawa, T. Suga, K. Ishige, T. Oyama, T. Izumi, S. Nagaya, M. Miyajima, I. Hirabayashi, and S. Tanaka, Proc. of 2nd Int. Symp. on Superconductivity, Tsukuba, Japan, 1989 (to be published by Springer-Verlag, Tokyo).

  12. W. G. Pfann, Zone Melting (John Wiley & Sons, New York, 1958).

    Google Scholar 

  13. M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974).

    Book  Google Scholar 

  14. F. R. Mollard and M. C. Flemings, Trans. TMS-AIME 239, 1526–1533 (1967).

    CAS  Google Scholar 

  15. M. Rinaldi, R. M. Sharp, and M. C. Flemings, Metall. Trans. 3, 3139 (1972).

    Article  CAS  Google Scholar 

  16. S. A. David and H. D. Brody, Metall. Trans. 5, 2608–2610 (1974).

    Article  CAS  Google Scholar 

  17. J. D. Hunt and K. A. Jackson, AIME Trans. 236, 843 (1966).

    CAS  Google Scholar 

  18. V. S. Stubican and R. C. Bradt, Ann. Rev. Mat. Sci. 11, 287–297 (1981).

    Article  Google Scholar 

  19. D. Dubois, G. Dhalenne, F. d’Yvoire, and A. Revcolevschi, J. Am. Ceram. Soc. 69 (1), C6–C8 (1986).

    Article  CAS  Google Scholar 

  20. G. Sheherbakov, S. A. David, and H. D. Brody, Scripta Metall. 8, 1239–1244 (1974).

    Article  Google Scholar 

  21. H. D. Brody and S. A. David, Solidification and Casting of Metals (Institute of Metals, New York, 1979), pp. 141–151.

    Google Scholar 

  22. F. Kimura and I. Shindo, J. Cryst. Growth 41, 192–198 (1977).

    Article  CAS  Google Scholar 

  23. B. Chalmers, Principles of Solidification (J. Wiley, New York, 1964), pp. 150–163.

    Google Scholar 

  24. W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, Acta Metall. 1, 428 (1953).

  25. W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Ltd., Switzerland, 1986), pp. 47–58.

    Google Scholar 

  26. Z. Schlesinger, R. T. Collins, and D. L. Kaiser, Phys. Rev. Lett. 59, 1958–1961 (1987).

    Article  CAS  Google Scholar 

  27. Y. Oka, N. Yamamoto, H. Kitaguchi, K. Oda, and J. Takada, Jpn. J. Appl. Phys. 28 (2), L213–L216 (1989).

    Article  CAS  Google Scholar 

  28. M. Onoda, A. Yamamoto, E. Takayama-Muromachi, and S. Takekawa, Jpn. J. Appl. Phys. 27 (5) L833–L836 (1988).

    Article  CAS  Google Scholar 

  29. J. Luo, J. A. Cutro, H. M. Chow, M. J. Cima, and D. A. Rudman, 1990 APS, March Meeting, Anaheim, CA.

  30. R. Guillermo, P. Confiant, J. Boivin, and D. Thomas, Rev. de Chim. minèrale 15, 153–159 (1978).

    CAS  Google Scholar 

  31. P. Confiant, J. Boivin, and D. Thomas, J. Solid State Chem. 18, 133–140 (1976).

    Article  Google Scholar 

  32. E. M. Levin and R. S. Roth, J. Res. N. B. S. 68A (2), 197–206 (1964).

    Article  Google Scholar 

  33. B. C. Chakoumakos, P. S. Ebey, B. C. Sales, and E. Sonder, J. Mater. Res. 4, 767–780 (1989).

    Article  CAS  Google Scholar 

  34. J. Boivin, D. Thomas, and G. Tridot, C. R. Acad. Sc. Paris 276, 1105–1107 (1973).

    CAS  Google Scholar 

  35. R. S. Roth, C. J. Rawn, J. D. Whitler, J. J. Ritter, and B. Burton, to be published in the J. Am. Ceram. Soc.

  36. C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 240, 631–634 (1988).

    Article  CAS  Google Scholar 

  37. J. A. Saggio, K. Sujata, J. Hahn, S. J. Hwu, K. R. Poeppelmeier, and T. O. Mason, J. Am. Ceram. Soc. 72 (5), 849–853 (1989).

    Article  CAS  Google Scholar 

  38. F. Lange, University of California, Santa Barbara (private communication).

  39. A. M. Gadalla and J. White, Trans. Brit. Ceram. Soc. 65 (4), 185 (1966).

    Google Scholar 

  40. N. G. Schmal and E. Minzl, Z. Physik. Chem. Frankfurt/M 47, 358 (1965).

    Article  Google Scholar 

  41. Teske and H-K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 371, 325–332 (1969).

  42. Teske and H-K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 379, 234–241 (1970).

  43. D. Gazit, P. N. Peszkin, L. V. Moulton, and R. S. Feigelson, J. Cryst. Growth 98, 545–549 (1989).

    Article  CAS  Google Scholar 

  44. X. P. Jiang, H. D. Brody, M. J. Cima, H. M. Chow, J. S. Haggerty, and M. C. Flemings, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cima, M.J., Jiang, X.P., Chow, H.M. et al. Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy. Journal of Materials Research 5, 1834–1849 (1990). https://doi.org/10.1557/JMR.1990.1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1834

Navigation