Skip to main content
Log in

Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Raman microprobe study of as-compacted nanophase TiO2 was carried out to investigate the spatial inhomogeneity of its anatase and rutile phases. Also, changes in the observed Raman spectra (line shifts and broadening) were investigated as a function of annealing at temperatures up to 600°C in argon or air. Microscopic phase inhomogeneity is observed and Raman spectral changes are shown to result from inhomogeneous oxygen deficiency in the nanophase TiO2. The line positions corresponding to the Raman active E g modes in both anatase and rutile are found to be sensitive to this oxygen deficiency and are potential quantitative indicators of such deviations from stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Siegel and H. Hahn, in Current Trends in the Physics of Materials, edited by M. Yussouff (World Scientific Publ. Co., Singapore, 1987), p.403.

    Google Scholar 

  2. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard, III, A. Kaldor, S. G. Louie, M. Moskovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang, J. Mater. Res. 4 (3), 704 (1989).

    Article  CAS  Google Scholar 

  3. B. H. Kear, L. E. Cross, J. E. Keem, R. W. Siegel, F. Spaepen, Κ. C. Taylor, E. L. Thomas, and K-N. Tu, Research Opportunities for Materials with Ultrafine Microstructures, National Materials Advisory Board–454 (National Academy Press, Washington, DC, 1989).

    Google Scholar 

  4. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  CAS  Google Scholar 

  5. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.

    Google Scholar 

  6. C. A. Melendres, A. Narayanasamy, V. A. Maroni, and R. W. Siegel, J. Mater. Res. 4 (5), 1246 (1989).

    Article  CAS  Google Scholar 

  7. M. J. Mayo, R. W. Siegel, A. Narayanasamy, and W. D. Nix, J. Mater. Res. 5 (5), 1073 (1990).

    Article  CAS  Google Scholar 

  8. R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

    Article  CAS  Google Scholar 

  9. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spec. 7, 321 (1978).

  10. R. J. Capwell, F. Spagnolo, and M. A. DeSessa, Appl. Spec. 26, 537 (1972).

    Article  CAS  Google Scholar 

  11. H. L. M. Chang, J. C. Parker, H. You, J. J. Xu, and D. J. Lam (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1990), Vol. 168, p. 343.

  12. Z. Li, S. Ramasamy, H. Hahn, and R. W. Siegel, Mater. Lett. 6, 195 (1988).

    Article  CAS  Google Scholar 

  13. T. Ohsaka, S. Yamaoka, and O. Shimomura, Solid State Commun. 30, 345 (1979).

    Article  CAS  Google Scholar 

  14. Y. Hara and M. Nicol, Phys. Status Solidi Β 94, 317 (1979); see also G. A. Samara and P. S. Peercy, Phys. Rev. Β 7, 1131 (1973).

    Article  CAS  Google Scholar 

  15. P. Merle, J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. Β 21, 1617 (1980).

    Article  CAS  Google Scholar 

  16. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).

    Article  CAS  Google Scholar 

  17. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).

    Article  CAS  Google Scholar 

  18. R. G. Breckenridge and W. R. Hossler, Phys. Rev. 91, 793 (1953).

    Article  CAS  Google Scholar 

  19. J. S. Anderson and R. S. D. Tilley, J. Solid State Chem. 2, 472 (1970).

    Article  CAS  Google Scholar 

  20. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, Philos. Mag. 20, 347 (1969).

    Article  CAS  Google Scholar 

  21. N. Krishnamurthy and T. M. Haridasan, Ind. J. Pure and Appl. Phys. 17, 67 (1979).

    CAS  Google Scholar 

  22. J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, Phys. Rev. Β 3, 3457 (1971).

    Article  Google Scholar 

  23. Υ. Α. Maroni, J. Phys. Chem. Solids 47, 307 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, J.C., Siegel, R.W. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. Journal of Materials Research 5, 1246–1252 (1990). https://doi.org/10.1557/JMR.1990.1246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1246

Navigation