Skip to main content
Log in

Oxide thin films for nanometer scale electron beam lithography

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The exposure response of high resolution oxide resist materials has been examined under high intensity irradiation conditions (∼1 ⊠ 105 A/cm2) to determine the relationships among film characteristics, exposure requirements, and ultimate resolution, and to explore further the processes responsible for ablative exposure. Amorphous films of Al2O3, Y2O3, Sc2O3, 3Al2O3·2SiO2, and MgO·Al2O3 were deposited by rf sputtering onto substrates cooled to –196°C and found to require an exposure dose of approximately 5 ⊠ 103 C/cm2 to complete exposure. Amorphous film structure was found to be necessary to achieve rapid removal of material during exposure. Material properties also found to influence irradiation response and help guide the selection of new materials included ionic character, heat of formation, and melting point. Film thickness was found to influence strongly both exposure requirements and resolution, an optimum thickness occurring at approximately 90 nm in amorphous Al2O3. The dose requirement in 90 nm thick amorphous Al2O3 was determined to be 2.5 ⊠ 103 C/cm2, which is two to three orders of magnitude lower than that of oxide films produced by other techniques. Resolution of the rf sputtered oxide films allowed the production of 5.0 nm holes on 8.1 nm centers. A dedicated STEM was used for exposure studies as well as imaging, microdiffraction analysis, and monitoring of the transmitted beam current, and allowed a qualitative model of the exposure process in rf sputtered oxide resists to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Mochel, C. J. Humphreys, J. A. Eades, J. M. Mochel, and A. M. Petford, Appl. Phys. Lett. 42 (4), 392–394 (1983).

    Article  CAS  Google Scholar 

  2. M. E. Mochel, J. A. Eades, M. Metzger, J. I. Meyer, and J. M. Mochel, Appl. Phys. Lett. 44 (5), 502–504 (1984).

    Article  CAS  Google Scholar 

  3. J. L. Hollenbeck and R. C. Buchanan (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1986), Vol. 72, pp. 289–294.

  4. A. N. Broers, in ACS Symposium Series 266, Materials for Microlithography, edited by L. F. Thompson, C. G. Willson, and J. M. J. Frechet, 11–38 (1984).

  5. D. C. Joy, Microelectron. Eng. 1, 103–119 (1983).

    Article  CAS  Google Scholar 

  6. D. F. Kyser, J. Vac. Sci. Technol. B1 (4), 1391–1397 (1983).

    Google Scholar 

  7. N. Samoto, R. Shimizu, H. Hashimoto, I. Adesida, E. Wolf, and S. Namba, J. Vac. Sci. Technol. B1 (4), 1367–1371 (1983).

    Google Scholar 

  8. M. S. Isaacson and A. J. Muray, Proceedings of the IEEE, edited by E. D. Wolf, 71 (5), 591 (1983).

  9. E. Kratschmer and M. Isaacson, J. Vac. Sci. Technol. B4 (1), 361–364 (1986).

    Google Scholar 

  10. R. E. Howard, W. J. Skocpol, and L. D. Jackel, Ann. Rev. Mater. Sci. 16, 441–466 (1986).

    Article  CAS  Google Scholar 

  11. S. Pope, M. S. Thesis, University of Illinois, 1984.

  12. S. D. Berger, D. McMullan, J. M. Macaulay, and L. M. Brown, Inst. Phys. Conf. Ser. No. 90: Chap. 4, 93–96 (1987).

    Google Scholar 

  13. M. E. Mochel, C. J. Humphreys, J. M. Mochel, and J. A. Eades, Proc. of the 41st Annual Meeting of the Electron Microscopy Society of America, 100–101 (1983).

  14. S. D. Berger, I. G. Salisbury, R. H. Milne, D. Imeson, and C. J. Humphreys, Phil. Mag. B 55 (3), 341–358 (1987).

    Article  CAS  Google Scholar 

  15. I. G. Salisbury, R. S. Timsit, S. D. Berger, and C. J. Humphreys, Appl. Phys. Lett. 45 (12), 1289–1291 (1984).

    Article  CAS  Google Scholar 

  16. J. L. Hollenbeck and R. C. Buchanan, Proc. of the 45th Annual Meeting of the Electron Microscopy Society of America, 396–397 (1987).

  17. J. L. Hollenbeck and R. C. Buchanan, “Oxide Thin Films for Nanometer Scale Electron Beam Lithography,” to be published in ACS Symposium Proceedings, Ceramic Thin and Thick Films (1989).

  18. S. D. Berger, J. M. Macaulay, and L. M. Brown, Phil. Mag. Lett. 56 (5), 179–185 (1987).

    Article  CAS  Google Scholar 

  19. M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett. 40 (14), 964–967 (1978).

    Article  CAS  Google Scholar 

  20. M. L. Knotek and P. J. Feibelman, Surf. Sci. 90, 78–90 (1979).

    Article  CAS  Google Scholar 

  21. J. Cazaux, J. Appl. Phys. 59 (5), 1418–1430 (1986).

    Article  Google Scholar 

  22. A. N. Broers, J. Cuomo, J. Harper, W. Molzen, R. Laibowitz, and M. Pomerants, Congress on Electron Microscopy, III, 343–354 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollenbeck, J.L., Buchanan, R.C. Oxide thin films for nanometer scale electron beam lithography. Journal of Materials Research 5, 1058–1072 (1990). https://doi.org/10.1557/JMR.1990.1058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1058

Navigation