Skip to main content
Log in

Room-temperature epitaxy of Cu on Si(111) using partially ionized beam deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The epitaxial growth of Cu on Si(111) substrate at room temperature was achieved using the Partially Ionized Beam (PIB) deposition technique in a conventional (10−4 Pa) vacuum without prior in situ cleaning of the substrate or post-annealing of the film. The beam contained ≍2% of Cu self-ions, and a bias of 0 to 4.2 kV was applied to the substrate during deposition. X-ray diffraction studies showed the existence of a twin structure in the epitaxial Cu layer deposited at 1 kV. A mechanism of epitaxial growth of Cu(111) on Si(111) substrate via an η″—Cu3Si intermediate phase is proposed. Based on the crystal structure of η″—Cu3Si, it is demonstrated that the geometrical lattice matching concept provides a simple picture of lattice continuity at the interface in this epitaxial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For review, see J. M. E. Harper, J. J. Cuomo, R. J. Gambino, and H. R. Kaufman, in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by O. Auciello and R. Kelly (Elsevier, Amsterdam, 1984), p. 127; J. E. Green, Solid State Technology 30 (4), 115 (1987).

  2. T. Itoh, T. Nakamura, M. Muromachi, and T. Sugiyama, Jpn. J. Appl. Phys. 15, 1145 (1976); T. Itoh and T. Nakamura, ibid., 16, 553 (1977).

    Article  CAS  Google Scholar 

  3. T. Narusawa, S. Shimuzu, and S. Komiya, J. Vac. Sci. Technol. 16, 366 (1979).

    Article  CAS  Google Scholar 

  4. T. Takagi, J. Vac. Sci. Technol. A2, 382 (1984) and references therein.

    Article  Google Scholar 

  5. A. Rockett, A. S. Barnett, and J. E. Green, J. Vac. Sci. Technol. B2, 306(1984).

    Article  Google Scholar 

  6. M. A. Hassan, A. S. Barnett, J. E. Sundgren, and J. E. Green, J. Vac. Sci. Technol. A5, 1883 (1987).

    Article  Google Scholar 

  7. S-N. Mei and T-M. Lu, J. Vac. Sci. Technol. A6, 9 (1988).

    Article  Google Scholar 

  8. A. S. Yapsir, P. Bai, and T-M. Lu, Appl. Phys. Lett. 53, 905 (1988).

    Article  CAS  Google Scholar 

  9. C-H. Choi, R. A. Harper, A. S. Yapsir, and T-M. Lu, Appl. Phys. Lett. 51, 1992 (1988); C-H. Choi, R. Ramayanan, S-N. Mei, and T-M. Lu (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 93, p. 267.

    Article  Google Scholar 

  10. S-N. Mei, T-M. Lu, and S. Roberts, IEEE Electronic Devices Lett. EDL-8, 503 (1987).

  11. P. Bai, T-M. Lu, and S. Roberts, Proc. IEEE VLSI Multilevel Interconnection Conference, Electron Device Society, New York (1988), p. 382.

  12. C-K. Hu, S. Chang, M. B. Small, and J.E. Lewis, V-MIC Conf. June 9–10, 1986, p. 181.

  13. H. Miyazaki, K. Homma, and K. Mukai, Extended Abstracts of 48th Fall Meeting, Jpn. Soc. Appl. Phys., 1987, p. 16.

  14. T. Ohmi, T. Kawasaki, T. Saito, H. Kuwabara, and T. Nitta, Technical Meeting of Tech. Group on Electronic Materials, The Institute of Electrical Engineers of Japan, Sendai, November 1987, paper no. EFM-87-24.

  15. S. D. Brotherton, J. R. Ayres, A. Gill, H. W. van Kestern, and F. J. A. M. Greidanus, J. Appl. Phys. 62 (5), 1826 (1987).

    Article  CAS  Google Scholar 

  16. T. Ohmi, T. Saito, T. Shibata, and T. Nitta, Appl. Phys. Lett. 52, 2236 (1988).

    Article  CAS  Google Scholar 

  17. M. Sosnowski and I. Yamada, Proc. Int. Conf. on Ion Implantation Technology-IIT ‘88, June 1988, Kyoto, Japan, p. 1.

  18. F. K. LeGoues, M. Krakow, and P. S. Ho, Philos. Mag. B 53, 833 (1986).

    Article  CAS  Google Scholar 

  19. F. K. LeGoues, M. Liehr, M. Renier, and W. Krakow, Philos. Mag. B 57, 179 (1988).

    Article  CAS  Google Scholar 

  20. K-H. Park, H-S. Jin, L. Luo, W. M. Gibson, G-C. Wang, and T-M. Lu (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 102, p. 271.

  21. W. Kern and D. A. Puotlineu, RCA Rev. 31, 187 (1970).

    CAS  Google Scholar 

  22. A. Zur and T. C. McGill, J. Appl. Phys. 55, 2 (1984).

    Article  Google Scholar 

  23. A. S. Yapsir, L. You, T-M. Lu, and M. Madden, J. Mater. Res. 4 (2), 343 (1989).

    Article  CAS  Google Scholar 

  24. F. Ringeisen, J. Derrien, E. Daugy, J. M. Layet, P. Mathiez, and F. Salvan, J. Vac. Sci. Technol. B1, 546 (1983).

    Article  Google Scholar 

  25. G. Rossi, T. Kendelewicz, I. Lindau, and W. E. Spicer, J. Vac. Sci. Technol. A1, 987 (1983).

    Article  Google Scholar 

  26. G. Rossi and I. Lindau, Phys. Rev. B 28, 3587 (1983).

    Article  Google Scholar 

  27. I. Abboti and M. Grioni, J. Vac. Sci. Technol. 19, 631 (1981).

    Article  Google Scholar 

  28. E. Daugy, P. Mathiez, F. Salvan, and J. M. Layet, Surf. Sci. 154, 267 (1985).

    Article  CAS  Google Scholar 

  29. A. Taleb-Ibrahimi, V. Mercier, C. A. Sebenne, D. Bolmont, and P. Chen, Surf. Sci. 152/153, 1228 (1985).

    Article  Google Scholar 

  30. C. Calandra, O. Bisi, and G. Ovttaviani, Surf. Sci. Rep. 4, 271 (1984).

    Article  CAS  Google Scholar 

  31. G. LeLay, Surf. Sci. 132, 168 (1983).

    Google Scholar 

  32. G. Rossi, Surf. Sci. Rep. 7, 1–101 (1987).

    Article  CAS  Google Scholar 

  33. L. Calliari, F. Marchetti, and M. Saucrotti, Phys. Rev. B 34, 521 (1986).

    Article  CAS  Google Scholar 

  34. W. Hasen, Constitution of Binary Alloys (McGraw-Hill, New York, 1985), p. 629.

    Google Scholar 

  35. J. K. Solberg, Acta Cryst. A34, 684 (1978).

    Article  CAS  Google Scholar 

  36. G. Weber, B. Gillot, and P. Barret, Phys. Status Solidi (a) 75, 567 (1983).

    Article  CAS  Google Scholar 

  37. S. A. Chambers and J. H. Weaver, J. Vac. Sci. Technol A3, 1929 (1985).

    Article  Google Scholar 

  38. A. Venables, J. Derrien, and A. P. Janssen, Surf. Sci. 95, 411 (1980).

    Article  CAS  Google Scholar 

  39. R. Selvaraj, S-N. Yang, J. F. McDonald, and T-M. Lu, Proc. IEEE VLSI Multilevel Interconnection Conference, Electron Device Society, New York (1987), p. 440.

    Google Scholar 

  40. M. J. Stowell, in Epitaxial Growth, Part B, edited by J. W. Matthews (Academic Press, New York, 1975), pp. 437–492.

  41. S. A. Chambers, G. A. Howell, T. R. Greenlee, and J. H. Weaver, Phys. Rev. B 31, 6402 (1985).

    Article  Google Scholar 

  42. B. I. Boltaks, Diffusion in Semiconductors (Academic Press, New York, 1963), p. 216.

    Google Scholar 

  43. A. Fazzio, M. J. Caldas, and A. Zunger, Phys. Rev. B 32, 934 (1985).

  44. S. A. Chambers, S. B. Anderson, and J. H. Weaver, Appl. Surf. Sci. 26, 542 (1986).

    Article  CAS  Google Scholar 

  45. S. A. Chambers, T. R. Greenlee, and G. A. Howell, J. Vac. Sci. Technol. A3, 1291 (1985).

    Article  Google Scholar 

  46. W. R. Wilcox and T. J. LaChapelle, J. Appl. Phys. 35, 240 (1964).

    Article  CAS  Google Scholar 

  47. R. P. Elliott, Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).

    Google Scholar 

  48. R. Castanet, J. Chem. Thermodynamics 11, 787 (1979).

    Article  CAS  Google Scholar 

  49. J. P. Biersach and L. J. Haggmark, Nucl. Instrum. Methods 174, 257 (1980); and J. P. Biersach and W. Eckstein, Appl. Phys. A 34, 73 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, P., Yang, GR., You, L. et al. Room-temperature epitaxy of Cu on Si(111) using partially ionized beam deposition. Journal of Materials Research 5, 989–997 (1990). https://doi.org/10.1557/JMR.1990.0989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0989

Navigation