Skip to main content
Log in

Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electronic mechanism behind the brittle fracture of trialuminide alloys is investigated using the full-potential linearized augmented plane-wave (FLAPW) total-energy method within the local density functional approach. To this end, the bulk phase stability, the elastic constants, the anti-phase boundary (APB) energy, the superlattice intrinsic stacking fault (SISF) energy, and the cleavage energy on different crystallographic planes have been determined. A small energy difference (=0.10 eV/unit formula) is found between the DO22 and L12 structures of Al3Ti. In general, the trialuminide alloys have large elastic modulus, small Poisson’s ratio, and small shear modulus to bulk modulus ratio. An extremely high APB energy (=670 mJ/m2) on the (111) plane is found for Al3Sc, indicating that the separation between ½(110) partials of a (110)(111) superdislocation is small. Since the total superdislocation has to be nucleated essentially at the same time, a high critical stress factor for dislocation emission at the crack tip is suggested. The high APB energy on the (111) plane is attributed to the directional bonding of Sc(d-electron)-Al(p-electron). The same type of directional bonds is also found for Al3Ti. In addition, moderately high values of SISF energy (=265 mJ/m2) on the (111) plane and APB energy (=450 mJ/m2) on the (100) plane are found for Al3Sc. The brittle fracture of trialuminide alloys is attributed to the higher stacking fault energies and a lower cleavage strength compared to those of a ductile alloy (e.g., Ni3Al). While the (110) surface has the highest surface energy, the cleavage strength (=19 GPa) of Al3Sc is found to be essentially independent of the crystallographic planes. The directional Sc—Al bond becomes even stronger on the (110) surface, which may explain the preferred (110) type cleavage observed by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamaguchi, Y. Umakoshi, and T. Yamane, Phil. Mag. A 55, 301 (1987).

    Article  CAS  Google Scholar 

  2. Y. Umakoshi, M. Yamaguchi, T. Yamane, and T. Hirano, Phil. Mag. A 58, 651 (1988).

    Article  CAS  Google Scholar 

  3. E. P. George, W. D. Porter, H. M. Henson, W. C. Oliver, and B. F. Oliver, J. of Mater. Res. 4 (1), 78 (1989).

    Article  CAS  Google Scholar 

  4. C. D. Turner, W. O. Powers, and J. A. Wert, Acta Metall. (to be published).

  5. S. C. Huang, E. L. Hall, and M. F. X. Gigliotti, J. Mater. Res. 3 (1), 1 (1988).

    Article  CAS  Google Scholar 

  6. J. Tarnacki and Y. W. Kim, Scripta Metall. 22, 329 (1988).

    Article  CAS  Google Scholar 

  7. J. H. Schneibel, P. F. Becher, and J. A. Horton, J. Mater. Res. 3 (6), 1272 (1988).

    Article  CAS  Google Scholar 

  8. A. E. Carlsson and P. J. Meschter, J. Mater. Res. 4 (5), 1060 (1989).

    Article  CAS  Google Scholar 

  9. T. Hong, T. J. Watson-Yang, T. Oguchi, and A. J. Freeman (to be published).

  10. D. M. Nicholson, G. M. Stocks, W. M. Temmerman, P. Sterne, and D. G. Pettifor, in High-Temperature Ordered Intermetallic Alloys III (MRS, 1989), p. 17.

  11. James R. Rice and Robb Thomson, Phil. Mag. 29, 73 (1974).

    Article  CAS  Google Scholar 

  12. M. L. Jokl, V. Vitek, and C. J. McMahon, Jr., Acta Metall. 28, 1479 (1980).

    Article  Google Scholar 

  13. S. M. Ohr, Mater. Sci. and Eng. 72, 1 (1985); and the references therein.

    Article  CAS  Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  15. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  16. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981); and the references therein.

    Article  CAS  Google Scholar 

  17. C. L. Fu, M. Weinert, and A. J. Freeman (to be published).

  18. C. L. Fu and M. H. Yoo, Phil. Mag. Lett. 58, 199 (1988).

    Article  CAS  Google Scholar 

  19. C. L. Fu and M. H. Yoo, in High-Temperature Ordered Intermetallic Alloys III (MRS, 1989), p. 81.

  20. C. L. Fu, A. J. Freeman, E. Wimmer, and M. Weinert, Phys. Rev. Lett. 54, 2261 (1985).

    Article  CAS  Google Scholar 

  21. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).

    Google Scholar 

  22. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973).

    Google Scholar 

  23. W. A. Simpson (unpublished work).

  24. S. F. Pugh, Phil. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  25. J. H. Schneibel (to be published).

  26. E. P. George, J. H. Schneibel, and J. A. Horton (to be published).

  27. Vijay K. Vasudevan, Robert Wheeler, and Hamish L. Fraser, in High Temperature Ordered Intermetallic Alloys III (Proc. Mater. Res. Soc. Symp.), edited by C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C. Koch (Materials Research Society, Pittsburgh, PA, 1989), Vol. 133, p. 705.

  28. S. P. Chen, A. F. Voter, and D. J. Srolovitz, J. de Phys. C 5, 157 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C.L. Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti. Journal of Materials Research 5, 971–979 (1990). https://doi.org/10.1557/JMR.1990.0971

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0971

Navigation