Skip to main content
Log in

Instrumentation of a conventional hardness tester for load-displacement measurement during indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A conventional microhardness tester has been instrumented with a piezoelectric load cell and capacitance displacement gages to measure load and displacement during indentation. As in other recently-developed load and displacing sensing indentation instruments, the new device can be used to measure a variety of mechanical properties, but has the advantage of being relatively inexpensive to assemble since many of its components are standard equipment. Tests were performed on soda-lime glass and an aluminum alloy, demonstrating the diversity of material elastic-plastic responses under indentation, particularly in the unloading cycle. The data suggest that models of elastic unloading based on invariant indenter-surface contact area may not be general, and may lead to underestimates of hardness and modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  2. W. C. Oliver, R. Hutchings, and J. B. Pethica, in ASTM STP 889, edited by P. J. Blau and B. R. Lawn (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90–108.

  3. D. Newey, M. A. Wilkens, and H. M. Pollock, J. Phys. E: Sci. Instrum. 15, 119 (1982).

    Article  CAS  Google Scholar 

  4. D. Stone, W. R. LaFontaine, P. Alexopoulos, T-W. Wu, and Che-Yu Li, J. Mater. Res. 3 (1), 141 (1988).

    Article  CAS  Google Scholar 

  5. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  6. J. Loubet, J. M. Georges, O. Marchesini, and G. Meille, J. Tribology 106, 43 (1984).

    CAS  Google Scholar 

  7. M. Kh. Shorshorov, S. I. Bulychev, and V. P. Alekhin, Sov. Phys. Dokl. 26, 769 (1982).

    Google Scholar 

  8. N. Gane and J. M. Cox, Philos. Mag. 22, 881 (1970).

    Article  CAS  Google Scholar 

  9. B. R. Lawn and V. R. Howes, J. Mater. Sci. 16, 2745 (1981).

    Article  Google Scholar 

  10. B. R. Lawn, A. G. Evans, and D. B. Marshall, J. Am. Ceram. Soc. 63, 574 (1980).

    Article  CAS  Google Scholar 

  11. I. N. Sneddon, Int. J. Engrng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  12. G. M. Pharr and W. C. Oliver, J. Mater. Res. 4 (1), 94 (1989).

    Article  CAS  Google Scholar 

  13. G. M. Pharr, W. C. Oliver, and D. R. Clarke, submitted to J. Electronic Materials.

  14. A. K. Bhattacharya and W. D. Nix, Int. J. Solids Structures 24, 881 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pharr, G.M., Cook, R.F. Instrumentation of a conventional hardness tester for load-displacement measurement during indentation. Journal of Materials Research 5, 847–851 (1990). https://doi.org/10.1557/JMR.1990.0847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0847

Navigation