Skip to main content
Log in

Solid state amorphization reactions in deformed Ni-Zr multilayered composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanisms of metallic glass formation and competing crystallization processes in mechanically-deformed Ni-Zr multilayered composites have been investigated by means of differential scanning calorimetry and x-ray diffraction. Our investigation of the heat of formation of amorphous NixZr1−x alloys shows a large negative heat of mixing (on the order of 30 kJ/mole) for compositions near Zr55Ni45 with a compositional dependence qualitatively similar to that predicted by mean field theory. We find that the products of solid state reactions in composites of Ni and Zr can be better understood in terms of the equilibrium phase diagram and the thermal stability of liquid quenched metallic glasses. We have determined the composition of the growing amorphous phase at the Zr interface in these Ni-Zr diffusion couples to be 55 ± 4% Zr. We investigated the kinetics of solid state reactions competing with the solid state amorphization reaction and found the value of the activation energy of the initial crystallization and growth of the growing amorphous phase to be 2.0 ± 0.1 eV, establishing an upper limit on the thermal stability of the growing amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

    Article  CAS  Google Scholar 

  2. W. L. Johnson, Prog. Mater. Sci. 30, 80 (1986).

    Article  Google Scholar 

  3. Proc. of the Conf. on Solid State Amorphizing Transformations, edited by R. B. Schwarz and W. L. Johnson, J. Less-Common Met. 140, 335 (1988).

  4. E. J. Cotts, W. J. Meng, and W. L. Johnson, Phys. Rev. Lett. 57, 2295 (1986).

    Article  CAS  Google Scholar 

  5. K. Samwer, Phys. Rep. 161, 1 (1988).

    Article  CAS  Google Scholar 

  6. L. Schultz and E. Hellstern, in Science and Technology of Rapidly Quenched Alloys, edited by M. Tenhover, W. L. Johnson, and L. E. Tanner, Materials Research Society Symposia Proceedings (Materials Research Society, Pittsburgh, PA, 1987), Vol. 80 and other papers in this volume.

    Google Scholar 

  7. A. M. Vredenberg, J. F. M. Westendorp, F. W. Saris, N. M. van der Pers, and Th. H. de Keijser, J. Mater. Sci. 1, 774 (1986).

    CAS  Google Scholar 

  8. Y. T. Cheng, W. L. Johnson, and M-A. Nicolet, Appl. Phys. Lett. 47, 800 (1985).

    Article  CAS  Google Scholar 

  9. H. Hahn, R. S. Averback, and S. J. Rothman, Phys. Rev. B 33, 8825 (1986).

    Article  CAS  Google Scholar 

  10. H. Hahn and R. S. Averback, Phys. Rev. B 37, 6537 (1988).

    Article  Google Scholar 

  11. E. J. Cotts, G. C. Wong, and W. L. Johnson, Phys. Rev. B 37, 9049 (1988).

    Article  CAS  Google Scholar 

  12. L. Schultz, in Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1984), p. 551; L. Schultz, in Proc. of the 6th Int. Conf. on Liquid and Amorphous Metals, in Z. Phys. Chem. 156 (1987).

  13. R. J. Highmore, J. E. Evetts, A. L. Greer, and R. E. Somekh, Appl. Phys. Lett. 50, 566 (1987).

    Article  CAS  Google Scholar 

  14. M. Atzmon, J. D. Verhoeven, E. D. Gibson, and W. L. Johnson, Appl. Phys. Lett. 45, 1052 (1984).

    Article  CAS  Google Scholar 

  15. K. L. Chopra, Thin Film Phenomena (Krieger, Malabar, FL, 1969).

    Google Scholar 

  16. W. J. Meng, E. J. Cotts, and W. L. Johnson, in Interfaces, Super-lattices and Thin Films, edited by J. D. Dow and I. K. Schuller, Materials Research Society Symposia Proceedings (Materials Research Society, Pittsburgh, PA, 1987), Vol. 77.

  17. K. H. Buschow, J. Phys. F. 14, 593 (1984).

    Article  CAS  Google Scholar 

  18. Z. Altounian, Tu Guo-hua, and J. O. Strom-Olsen, J. Appl. Phys. 54, 3111 (1983).

    Article  CAS  Google Scholar 

  19. F. H. M. Spit, J.W. Drijiver, and S. Radelaar, Scripta Metall. 14, 1071 (1980).

    Article  CAS  Google Scholar 

  20. A.R. Miedema, Phillips Tech. Rev. 36, 217 (1976); P. I. Leoff, A. W. Weeber, and A. R. Miedema, J. Less-Common Met. 140, 299 (1988).

    CAS  Google Scholar 

  21. N. Saunders and A. P. Miodownik, J. Mater. Sci. 1, 38 (1986).

    CAS  Google Scholar 

  22. A. Pasturel, C. Colinet, and K. H. J. Buschow, in Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier Science Publishers, 1985).

  23. U. Gösele and K. N. Tu, J. Appl. Phys. 53, 3252 (1982).

    Article  Google Scholar 

  24. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  CAS  Google Scholar 

  25. J. C. Barbour, Phys. Rev. Lett. 55, 2872 (1985).

    Article  CAS  Google Scholar 

  26. B. M. Clemens, Phys. Rev. B 33, 7615 (1986).

    Article  CAS  Google Scholar 

  27. Y. D. Dong, G. Gregan, and M. G. Scott, J. Non-Cryst. Solids 43, 430 (1981).

    Article  Google Scholar 

  28. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  29. W. J. Meng, C. W. Nieh, and W. L. Johnson, Appl. Phys. Lett. 51, 1693 (1987).

    Article  CAS  Google Scholar 

  30. S. B. Newcomb and K. N. Tu, Appl. Phys. Lett. 48, 1436 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, G.C., Johnson, W.L. & Cotts, E.J. Solid state amorphization reactions in deformed Ni-Zr multilayered composites. Journal of Materials Research 5, 488–497 (1990). https://doi.org/10.1557/JMR.1990.0488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0488

Navigation