Skip to main content
Log in

TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) was used to investigate the nanostructure of sputter-deposited MoS2 films; these films represent the early stages of growth under deposition conditions that produce a zone 2 columnar morphology. Analysis reveals that the early-growth film morphology consists of anisotropic (plate-like) islands in which the (001) basal planes are generally perpendicular to the substrate (forming “edge islands”) or parallel to the substrate (forming “basal islands”). Within the context of an active-sites nucleation model, localized regions of the substrate surface can lack the active sites needed to induce edge orientation. The edge islands evolve into the zone 2 morphology, shadowing and inhibiting the continued growth of the basal islands. Basal plane (002) lattice image curvature and kinking were observed in the edge islands. Dark-field analysis showed intensity variations within the edge islands. The edge island plates appear to be imperfect crystals of aligned basal planes. These crystals can bend, kink, or twist, apparently because of variations in local growth conditions. The ability of crystal growth to deviate has implications for the morphological evolution of thicker films. The ability of the MoS2 crystal lattice to bend supports the idea that localized deviation can occur during sliding wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. N. Gardos, Lubr. Eng. 32, 463 (1976).

    CAS  Google Scholar 

  2. R. I. Cristy, Thin Solid Films 73, 299 (1980).

    Article  Google Scholar 

  3. B. C. Stupp, Thin Solid Films 84, 257 (1981).

    Article  CAS  Google Scholar 

  4. P. Niederhauser, H. E. Hintermann, and M. Maillat, Thin Solid Films 108, 209 (1983).

    Article  Google Scholar 

  5. B. C. Stupp, Proc. 3rd Int. Conf. on Solid Lubrication, Denver, CO (American Society of Lubrication Engineers, Park Ridge, IL, 1984), SP-14, p. 217.

    Google Scholar 

  6. T. Spalvins, ASLE Trans. 14, 267 (1971).

    Article  CAS  Google Scholar 

  7. T. Spalvins, ASLE Trans. 17, 1 (1973).

    Article  Google Scholar 

  8. M. Nishimura, M. Nosaka, M. Suzuki, and Y. Miyakawa, Proc. 2nd ASLE Int. Conf. on Solid Lubrication, Denver, CO, ASLE SP-6, 128 (1978).

  9. T. Spalvins, Thin Solid Films 73, 291 (1980).

    Article  CAS  Google Scholar 

  10. T. Spalvins, Thin Solid Films 96, 17 (1982).

    Article  CAS  Google Scholar 

  11. V. Buck, Wear 91, 281 (1983).

    Article  CAS  Google Scholar 

  12. P. D. Fleischauer, ASLE Trans. 27, 82 (1984).

    Article  CAS  Google Scholar 

  13. T. Spalvins, Proc. 3rd Int. Conf. on Solid Lubrication, Denver, CO (American Society of Lubrication Engineers, Park Ridge, IL, 1984), SP-14, p. 401.

    Google Scholar 

  14. R. Bichsel, P. Buffat, and F. Levy, J. Phys. D: Appl. Phys. 19, 1575 (1986).

    Article  CAS  Google Scholar 

  15. V. Buck, Thin Solid Films 139, 157 (1986).

    Article  CAS  Google Scholar 

  16. V. Buck, Vacuum 36, 89 (1986).

    Article  CAS  Google Scholar 

  17. E. W. Roberts, 20th American Mechanisms Symp. (NASA Lewis Res. Ctr., Cleveland, OH, May 1986), p. 103.

    Google Scholar 

  18. E. W. Roberts, Proc. Inst. Mech. Eng., Tribology — Friction, Lubrication, and Wear, Fifty Years On (London, July 1987), Vol. I, p. 503.

  19. J. K. G. Panitz, L. E. Pope, C. R. Hills, J. E. Lyons, and D. J. Staley, Thin Solid Films 154, 323 (1987).

    Article  CAS  Google Scholar 

  20. J. R. Lince and P. D. Fleischauer, J. Mater. Res. 2 (6), 827 (1987).

    Article  CAS  Google Scholar 

  21. N. J. Mikkelson, J. Chevallier, and G. Sorenson, Appl. Phys. Lett. 52, 1130 (1988).

    Article  Google Scholar 

  22. P. D. Fleischauer and R. Bauer, Tribology Transactions 31, 239 (1988).

    Article  CAS  Google Scholar 

  23. C. Müller, C. Menoud, M. Maillat, and H. E. Hintermann, Surface Coatings and Technol. 36, 351 (1988).

    Article  Google Scholar 

  24. M. R. Hilton and P. D. Fleischauer, Mater. Res. Soc. Symp. Proc. 140, 227 (1989).

    Article  Google Scholar 

  25. P. Gribi, Z. W. Sun, and F. Levy, J. Appl. Phys. D: Appl. Phys. 22, L238 (1989).

    Article  Google Scholar 

  26. aJ. A. Thornton, Ann. Rev. Mater. Sci. 7, 239 (1977). bJ. A. Thornton, J. Vac. Sci. & Technol. A 4 (6), 3059 (1986).

    Article  CAS  Google Scholar 

  27. B. A. Movchan and A.V. Demchishin, Phys. Met. Metallogr. 28, 83 (1969).

    Google Scholar 

  28. P. A. Bertrand, J. Mater. Res. 4 (1), 180 (1989).

    Article  CAS  Google Scholar 

  29. S. V. Didziulis and P. D. Fleischauer, Langmuir (in press).

  30. M. Matsunaga and T. Nakagawa, Proc. 2nd ASLE Int. Conf. on Solid Lubrication, Denver, CO, ASLE SP-6, 45 (1978).

  31. M. T. Lavik and M. E. Campbell, ASLE Trans. 233 (1971–1972).

  32. G. G. Shaw and M. T. Lavik, Proc. Electron Micros. Soc. Amer. 30, 626 (1972).

    Article  CAS  Google Scholar 

  33. P. A. Bertrand, Langmuir (in press).

  34. J. R. Lince, J. Mater. Res. 5 (1), 218 (1990).

    Article  CAS  Google Scholar 

  35. P. D. Fleischauer, Thin Solid Films 154, 309 (1987).

    Article  CAS  Google Scholar 

  36. P. D. Fleischauer, J. R. Lince, P. A. Bertrand, and R. Bauer, Langmuir, 5 1009 (1989).

    Article  CAS  Google Scholar 

  37. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, 1978), p. 284.

  38. G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials (Wiley-Interscience, 1979), p. 191.

  39. J. W. Edington, Practical Electron Microscopy in Materials Science, Monograph 3: Interpretation of Transmission Electron Micrographs (MacMillan Technical Library, 1975), p. 75.

  40. J. C. H. Spence, Experimental High-Resolution Electron Microscopy (Clarendon Press, Oxford, 1981).

    Book  Google Scholar 

  41. K. C. Thompson-Russell and J.W. Edington, Practical Electron Microscopy in Materials Science, Monograph 5: Electron Microscope Specimen Preparation Techniques in Materials Science (MacMillan Technical Library, 1977), p. 21.

  42. D.R. Veblen and P.R. Buseck, Science 206, 1398 (1979).

    Article  CAS  Google Scholar 

  43. J.V. Sanders, Chemica Scripta 79 (14), 141 (1978).

    Google Scholar 

  44. O. Sorensen, B. S. Clausen, R. Candia, and H. Topsoe, Applied Catalysis 13, 363 (1985).

    Article  Google Scholar 

  45. F. Delannay, Applied Catalysis 13, 363 (1985).

    Article  Google Scholar 

  46. N. Takahashi, Wear 124, 279–289 (1988).

    Article  CAS  Google Scholar 

  47. J. R. Jones and G. W. Hoover, ASLE Trans. 14, 55 (1971).

    Article  Google Scholar 

  48. M. N. Gardos, Tribology Trans. 31 (2), 214 (1988).

    Article  CAS  Google Scholar 

  49. JANAF Thermochemical Tables, 2nd ed. (National Bureau of Standards, Washington, DC, June 1971).

  50. Powder Diffraction File (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilton, M.R., Fleischauer, P.D. TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. Journal of Materials Research 5, 406–421 (1990). https://doi.org/10.1557/JMR.1990.0406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0406

Navigation