Skip to main content
Log in

Mechanical properties of nickel beryllides

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The elastic properties of nickel beryllide have been evaluated from room temperature to 1000 °C. The room temperature modulus is measured to be 186 GPa, which is relatively low by comparison with other B2 aluminides such as NiAl and CoAl. Hardness measurements were carried out on specimens that had compositions over the range from 49 to 54 at. % Be, using both a Vickers microhardness tester and a nanoindentor. It was found that the hardness of NiBe exhibits a minimum at the equiatomic composition. This behavior is similar to that of aluminides of the same crystal structure, e.g., NiAl and CoAl. The effect of interstitial oxygen on the hardness of NiBe has also been studied and the results show that the presence of oxygen in NiBe can cause a significant increase in hardness. It is demonstrated that the hardness increase for the off-stoichiometric compositions is primarily caused by interstitial oxygen and can only be attributed partially to anti-site defects generated in off-stoichiometric compositions. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Liu, Inter. Metals Rev. 29, 168 (1984).

    CAS  Google Scholar 

  2. C. Lall, S. Chin, and D. P. Pope, Metall. Trans. A 10A, 1323 (1979).

    Article  Google Scholar 

  3. C. T. Liu and J. O. Stiegler, Science 226, 636 (1984).

    Article  CAS  Google Scholar 

  4. H. A. Lipsitt, D. Shechtman, and R. E. Schafrik, Metall. Trans. A 6A, 1991 (1975).

    Article  Google Scholar 

  5. A. Ball and R. E. Smallman, Acta Metall. 14, 1517 (1966).

    Article  CAS  Google Scholar 

  6. A. J. Stonehouse, R. M. Paine, and W. W. Beaver, in Mechanical Properties of Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, Inc., New York, 1960), p. 297.

    Google Scholar 

  7. K. H. Hahn and K. Vedula, Scripta Metall. 23, 7 (1989).

    Article  CAS  Google Scholar 

  8. C. T Liu, C. L. White, C. C. Koch, and E. H. Lee, in High Temperature Materials Chemistry II, edited by Munir Cubicciotti (The Electrochemical Soc. Inc. Proc. 1983), Vol. 83–7, p. 32.

  9. K. Aoki and O. Izumi, Nippon Kinzoku Gakkaishi 43, 1190 (1979).

    CAS  Google Scholar 

  10. A. G. Rozner and R. J. Wasilewski, J. Inst. Metals 94, 169 (1966).

    CAS  Google Scholar 

  11. Phase Diagrams of Binary Beryllium Alloys, edited by H. Okamoto and L.E. Tanner (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 134.

  12. E. M. Grala, in Mechanical Properties of Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, Inc., New York, 1960), p. 358.

    Google Scholar 

  13. J. H. Westbrook, J. Electrochem. Soc. 103, 54 (1956).

    Article  CAS  Google Scholar 

  14. M. R. Harmouche and A. Wolfenden, J. Testing and Evaluation, JTEVA, 13, No. 6, 424 (1985).

    Article  CAS  Google Scholar 

  15. J. B. Pethica, R. Hutchings, and W. C. Oliver, Phil. Mag. 48A, No. 4, 593 (1983).

    Article  Google Scholar 

  16. M. R. Harmouche and A. Wolfenden, Mater. Sci. Engr. 84, 35 (1986).

    Article  CAS  Google Scholar 

  17. M. R. Harmouche and A. Wolfenden, J. Testing and Evaluation, JTEVA, 15, No. 2, 101 (1987).

    Article  CAS  Google Scholar 

  18. R. A. Oriani, Acta Metall. 12, 1399 (1964).

    Article  CAS  Google Scholar 

  19. L. Misch, Z. Phys. Chem. B 29, 42 (1935).

    CAS  Google Scholar 

  20. A. J. Bradley and G. C. Seager, J. Inst. Met. 64, 81 (1937).

    Google Scholar 

  21. A. J. Bradley and A. Taylor, Proc. Roy. Soc. A 159, 56 (1937).

    Google Scholar 

  22. M. J. Cooper, Phil. Mag. 89, 805 (1963).

    Article  Google Scholar 

  23. J. O. Ratka, V. K. Sethi, and R. Gibala, in Mechanical Properties of BCC Metals, edited by M. Meshii (TMS-AIME, Warrendale, PA, 1982), p. 103.

    Google Scholar 

  24. C. R. Tottle, J. Inst. Metals 85, 375 (1956–1957).

    Google Scholar 

  25. R. W. Fountain and C. R. McKinsey, in Columbium and Tantalum, edited by F. T. Sisco and E. Epremian (John Wiley and Sons, Inc., New York, 1963), p. 198.

    Google Scholar 

  26. E. Gebhardt, H-D. Seghezzi, and W. Durrschnabel, in Plansee Proc. 1985-High Melting Metals, edited by A. G. Reutte (Metallwerk Plansee, Tyrol, 1959), p. 291.

    Google Scholar 

  27. C. A. Wert, Trans. AIME 188, 1242 (1950).

    CAS  Google Scholar 

  28. P. R. V. Evans, J. Less-Common Metals 4, 78 (1962).

    Article  CAS  Google Scholar 

  29. R. L. Fleisher and W. R. Hibbard, Jr., in Conference on Relation of Structure to Mechanical Properties of Metals (H. M. Stationery Office, London, 1963), p. 261.

    Google Scholar 

  30. T. Takasugi, N. Masahashi, and O. Izumi, Scripta Metall. 20, 1317 (1986).

    Article  CAS  Google Scholar 

  31. S. C. Huang, A. I. Taub, and K-M. Chang, Acta Metall. 32, 1703 (1984).

    Article  CAS  Google Scholar 

  32. R. D. Rawlings and A. E. Staton-Bevan, J. Mater. Sci. 10, 505 (1975).

    Article  CAS  Google Scholar 

  33. S. C. Huang, J. Mater. Res. 1, 60 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieh, T.G., Wadsworth, J. & Liu, C.T. Mechanical properties of nickel beryllides. Journal of Materials Research 4, 1347–1353 (1989). https://doi.org/10.1557/JMR.1989.1347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1347

Navigation