Skip to main content
Log in

Nucleation and propagation of cracks at grain boundaries in zinc bicrystals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A study has been made of fatigue and fracture in zinc bicrystals. It is shown that cleavage cracks are nucleated, both under tension and as a result of fatigue, in regions of multiple slip adjacent to grain boundaries at stresses below those for crack nucleation in single crystals. The nature of crack penetration through the boundary is observed as a function of orientation across the boundary. Low angle tilt boundaries are barriers to crack propagation, increasing effective surface energies for crack propagation by 1.6–2 times. Twist boundaries, due to the tearing that accompanies penetration, can result in a twelvefold increase in effective surface energy. Nonbasal cleavage is associated with a twinning mechanism, and an even higher surface energy is required to propagate a crack into a crystal oriented for this type of cleavage. The results carry the implication that, in the absence of surface defects, fatigue, failure in polycrystalline zinc is nucleated at the first internal grain boundary and not at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Miller and M. F. E. Ibrahim, Fatigue Eng. Mater. Struct. 4, 263 (1981).

    Article  Google Scholar 

  2. C. Messmer, J. C. Bilello, and D. Dew-Hughes, Metal Science 15, 79 (1981).

    Article  CAS  Google Scholar 

  3. D. Dew-Hughes, C. Messmer, and J. C. Bilello, Mater. Lett. 1, 37 (1982).

    Article  Google Scholar 

  4. C. Messmer, D. Dew-Hughes, and J. C. Bilello, Philos. Mag. A47, 635 (1983).

    Google Scholar 

  5. J. C. Bilello, D. Dew-Hughes, and A. Pucino, J. Appl. Phys. 54, 1821 (1983).

    Article  CAS  Google Scholar 

  6. H. A. Schmitz, J. C. Bilello, and Z. Rek, Mater. Sci and Eng. 81, 293 (1986).

    Article  CAS  Google Scholar 

  7. A. B. Hmelo, J. C. Bilello, S. T. Davis, and D. K. Bowen, Mater. Lett. 2, 6 (1983).

    Article  CAS  Google Scholar 

  8. A. B. Hmelo, J. C. Bilello, S. T. Davis, and D. K. Bowen, in Applications of X-ray Topographic Methods to Materials Science, edited by S. Weissman, F. Balibar, and J-F. Petroff (Plenum, New York, 1984), p. 343.

    Google Scholar 

  9. C. G’Sell and G. Champier, Philos. Mag. A41, 917 (1980).

    Article  Google Scholar 

  10. G. Michot and A. George, Scripta Metall. 16, 519 (1982).

    Article  CAS  Google Scholar 

  11. G. Michot, A. George, and G. Champier, in Applications of X-ray Topography to Materials Science, edited by S. Weissman, F. Balibar, and J-F. Petroff (Plenum, New York, 1984), p. 325.

    Google Scholar 

  12. A. George, A. Jaques, G. Michot, and J-P. Michel, in Applications of X-ray Topography to Materials Science, edited by S. Weissman, F. Balibar, and J-F. Petroff (Plenum, New York, 1984), p. 377.

    Google Scholar 

  13. B. Chalmers, Proc. Roy. Soc. A162, 120 (1937).

    Google Scholar 

  14. R. Clark and B. Chalmers, Acta Metall. 2, 80 (1954).

    Article  CAS  Google Scholar 

  15. K. T. Aust and N. K. Chen, Acta Metall. 2, 426 (1954).

    Article  Google Scholar 

  16. J. D. Livingston and B. Chalmers, Acta Metall. 5, 322 (1957).

    Article  CAS  Google Scholar 

  17. R. L. Fleischer and W. A. Backofen, Trans. AIME 218, 243 (1960).

    CAS  Google Scholar 

  18. S. Miura, K. Hamashima, and K. T. Aust, Acta Metall. 28, 1591 (1980).

    Article  CAS  Google Scholar 

  19. C. Rey and A. Zaoui, Acta Metall. 28, 687 (1980).

    Article  CAS  Google Scholar 

  20. C. Rey and A. Zaoui, Acta Metall. 30, 523 (1982).

    Article  CAS  Google Scholar 

  21. Y. D. Chuang and H. Margolin, Metall. Trans. 4, 1905 (1973).

    Article  CAS  Google Scholar 

  22. T. D. Lee and H. Margolin, Metall. Trans. A 8A, 145, 157 (1977).

    Article  Google Scholar 

  23. R. E. Hook and J. P. Hirth, Acta Metall. 15, 535, 1099 (1967).

    Article  CAS  Google Scholar 

  24. J. D. Mote and J. E. Dorn, Trans. AIME 218, 491 (1960).

    CAS  Google Scholar 

  25. J. J. Hauser and B. Chalmers, Acta Metall. 9, 802 (1961).

    Article  CAS  Google Scholar 

  26. T. Kawada, Proc. 1st World Met. Congress (1951), ASM, p. 591; J. Phys. Soc. Jpn. 6, 362 (1951).

  27. J. J. Gilman, Acta Metall. 1, 426 (1953).

    Article  CAS  Google Scholar 

  28. G. B. Craig and B. Chalmers, Can. J. Phys. 35, 38 (1957).

    Article  CAS  Google Scholar 

  29. J. J. Gilman, Trans. AIME 212, 783 (1958).

    CAS  Google Scholar 

  30. H. Fujita, K. Toyoda, T. Mori, T. Tabata, T. Ono, and T. Takeda, Trans. Jpn. Inst. Met. 24, 195 (1983).

    Article  Google Scholar 

  31. A. Deruyttère and G. B. Greenough, J. Inst. Met. 84, 337 (1955–56).

    Google Scholar 

  32. R. L. Bell and R. W. Cahn, Proc. Roy. Soc. A239, 494 (1957); J. Inst. Met. 86, 433 (1957–58).

    Google Scholar 

  33. D. J. Burr and N. Thompson, Philos. Mag. 7, 1773 (1962).

    Article  CAS  Google Scholar 

  34. D. J. Burr and N. Thompson, Philos. Mag. 12, 229 (1965).

    Article  CAS  Google Scholar 

  35. B. Wielke and F. Stangler, Philos. Mag. 22, 155 (1970).

    Article  Google Scholar 

  36. J. M. Liu and B. W. Shen, Acta Metall. 30, 1197 (1982).

    Article  CAS  Google Scholar 

  37. R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A242, 203 (1957).

    Google Scholar 

  38. D. M. Fegredo and G. B. Greenough, J. Inst. Met. 87, 1 (1958–59).

  39. T. H. Alden, Acta Metall. 10, 653 (1962).

    Article  CAS  Google Scholar 

  40. T. Broom and J. M. Summerton, Philos. Mag. 8, 1847 (1963).

    Article  CAS  Google Scholar 

  41. S. Chikwembani and J. Weertman, Scripta Metall. 19, 1499 (1985).

    Article  CAS  Google Scholar 

  42. K. Atagi, F. Inoko, and G. Mima, J. Jpn. Inst. Met. 49, 723 (1985).

    Article  CAS  Google Scholar 

  43. L. C. Lim and R. Raj, Scripta Metall. 20, 539 (1986).

    Article  CAS  Google Scholar 

  44. J. J. Gilman and V. J. DeCarlo, TMS-AIME 206, 436 (1956).

    Google Scholar 

  45. J. C. Bilello, H. Chen, A. B. Hmelo, J. M. Liu, H. K. Birnbaum, P. J. Herley, and R. E. Green, Jr., Nucl. Instrum. Methods 215, 291 (1983).

    Article  Google Scholar 

  46. J. C. Bilello, H. A. Schmitz, and D. Dew-Hughes, J. Appl. Phys. 65, 2282 (1989).

    Article  CAS  Google Scholar 

  47. M. Gell and E. Smith, Acta Metall. 15, 253 (1967).

    Article  CAS  Google Scholar 

  48. H. S. Rosenbaum, Acta Metall. 9, 742 (1961).

    Article  CAS  Google Scholar 

  49. S. Koda and H. Yoshinaga, J. Inst. Met. 97, 125 (1969).

    CAS  Google Scholar 

  50. H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics (Edward Arnold, London, 1984), p. 40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, H.A., Dew-Hughes, D. & Bilello, J.C. Nucleation and propagation of cracks at grain boundaries in zinc bicrystals. Journal of Materials Research 4, 1182–1194 (1989). https://doi.org/10.1557/JMR.1989.1182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.1182

Navigation