Skip to main content
Log in

Metastable supersaturated solutions of nitrogen in rapidly-solidified silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The depth distribution, chemical bonding, and electrical behavior of N quenched into Si by pulsed laser-induced melting have been investigated by secondary ion mass spectroscopy, infrared (ir) absorption, transmission electron microscopy (TEM), and electrical conductivity. The results demonstrate that laser-induced melting of N-implanted layers provides access to a useful range of otherwise inaccessible conditions for the study of N in Si. Nitrogen concentrations four orders of magnitude above equilibrium solid solubility are retained in implanted layers with limited diffusion during laser-induced melt and rapid solidification. The N is incorporated predominantly as N–N pairs bonded to Si, similar to the bonding configuration for equilibrium concentrations introduced during ingot growth. Formation of SixNy clusters is suggested to explain ir absorption bands, features in TEM, and shallow donor activity observed after furnace annealing near 750 °C. These cluster effects are removed by a melt/solidification sequence which restores the N to N–N pair centers together with a small fraction of off-center substitutional N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Chiou, J. Moody, R. Sandfort, and F. Shimura, Electrochem. Soc. Proc, edited by K. E. Bean and G. Rozgonyi (The Electrochemical Society, Inc., Pennington, NJ, 1984), Vol. 84–7, p. 59.

  2. T. Abe, H. Harada, N. Ozawa, and K. Adomi, Mater. Res. Soc Symp. Proc, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Materials Research Society, Pittsburgh, PA, 1986), Vol. 59, p. 537.

  3. T. Hori, H. Iwasaki, Y. Naito, and H. Esaki, IEEE Trans. Electron Devices ED-34, 2238 (1987).

    Article  Google Scholar 

  4. M. J. Kim and M. Ghezzo, J. Electrochem. Soc. 131, 1934 (1984).

    Article  CAS  Google Scholar 

  5. L. Nesbit, G. Slusser, R. Frenette, and R. Halbach, J. Electrochem. Soc. 133, 1186 (1986).

    Article  CAS  Google Scholar 

  6. C. W. White, Mater. Res. Soc. Symp. Proc., edited by B. R.. Appleton and G. K. Celler (Elsevier Sci. Pub. Co., Inc., New York, 1982), Vol. 4, p. 109.

  7. Y. Yatsuragi, N. Akiyama, Y. Endo, and T. Nozaki, J. Electrochem. Soc. 120, 975 (1973).

    Article  CAS  Google Scholar 

  8. D. K. Brice, Radiat. Eff. 11, 227 (1971).

    Article  CAS  Google Scholar 

  9. M. O. Thompson, Ph.D. Thesis, Cornell University (1984).

  10. H. J. Stein, J. Electrochem. Soc. 134, 2592 (1987).

    Article  CAS  Google Scholar 

  11. SIMS measurements were made by Charles Evans and Associates, Redwood City, CA.

  12. N. V. Denisova, E. I. Zorin, P. V. Pavlov, D. I. Tetel’baum, and A. F. Khokhlov, Inorg. Mater. 11, 1920 (1976).

    Google Scholar 

  13. W. J. M. J. Josquin, Nucl. Instrum. Methods 209/210, 581 (1983).

    Article  Google Scholar 

  14. H. J. Stein, Proc. 13th Int. Conf. on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr. (TMS-AIME, Warrendale, PA, 1985), p. 839; Mater. Res. Soc. Symp. Proc, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Materials Research Society, Pittsburgh, PA, 1986), Vol. 59, p. 523.

  15. T. Abe, K. Kikuchi, S. Shirai, and S. Muraoka, Electrochem. Soc. Proc, edited by H. R. Huff and R. J. Kriegler (The Electrochemical Society, Inc., Pennington, NJ, 1981), Vol. 81–5, p. 54.

  16. Y. Itoh, T. Nozaki, T. Masui, and T. Abe, Appl. Phys. Lett. 47, 488 (1985).

    Article  CAS  Google Scholar 

  17. T. P. Smith, III, P. J. Stiles, W. M. Augustynaik, W. L. Brown, D. C. Jacobson, and R. A. Kant, Mater. Res. Soc. Symp. Proc, edited by J. C. C. Fan and N. M. Johnson (Elsevier Sci. Pub. Co., Inc., New York, 1984), Vol. 35, p. 453.

  18. K. Murakami, H. Itoh, K. Takita, and K. Musuda, Appl. Phys. Lett. 45, 176 (1984); H. Itoh, K. Murakami, K. Takita, and K. Musada, Proc. of Fifteenth Symp. on Ion Implantation and Submicron Fabrication (Rigaku Kenkyusho, Wako-shi Saitama 351, Japan, 1984), p. 85.

    Article  CAS  Google Scholar 

  19. H. J. Stein, Appl. Phys. Lett. 46, 1339 (1985).

    Article  Google Scholar 

  20. K. L. Brower, Phys. Rev. B26, 6040 (1982).

    Article  Google Scholar 

  21. J. A. Lambert and P. S. Dobson, Philos. Mag. A 44, 1043 (1981).

    Article  Google Scholar 

  22. M. Reiche, J. Reichel, and W. Nitzsche, Phys. Status Solidi A9a 197, 851 (1988).

    Article  Google Scholar 

  23. M. H. Loretto and R. E. Smallman, Defect Analysis in Electron Microscopy (Chapman and Hall, London, and John Wiley and Sons Inc., New York, 1975).

    Google Scholar 

  24. A. Kanamori and M. Kanamori, J. Appl. Phys. 50, 8095 (1979).

    Article  CAS  Google Scholar 

  25. K. Holzlein, G. Penzl, and M. Schulz, Appl. Phys. A 34, 155 (1984).

    Article  Google Scholar 

  26. H. J. Stein and P. S. Peercy, Mater. Res. Soc. Symp. Proc, edited by J. Narayan, W. L. Brown, and R. A. Lemons (Elsevier Sci. Pub. Co., Inc., New York, 1983), Vol. 13, p. 229.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, H.J., Peercy, P.S. & Hills, C.R. Metastable supersaturated solutions of nitrogen in rapidly-solidified silicon. Journal of Materials Research 4, 616–622 (1989). https://doi.org/10.1557/JMR.1989.0616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0616

Navigation