Skip to main content
Log in

Mechanisms for crystallographic orientation in the crystallization of thin silicon films from the melt

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The dependence of the growth velocity on crystal orientation has been studied during crystallization of thin polycrystalline silicon films from the melt. Two types of growth velocity anisotropy have been observed. In the first, competitive growth between (100) textured seeds and seeds with (110) and (111) textures indicates that the relative growth velocities are ν(100) > ν(110)ν(111). It is postulated that this textural growth velocity anisotropy is a result of the differences in the interal energy of grains with different textures. This assumption, combined with the data, yields estimates of the interfacial energy anisotropy for the Si–SiO2 interface: γ(111) − γ(100) = 0.069 J/m2 and γ(110) − γ(100) = 0.012 J/m2. Another type of growth velocity anisotropy is responsible for the development of in-plane orientation in competitive growth between (100)-textured seeds. Simple models, which describe development of these two types of crystallographic orientation via anisotropies in growth velocity, agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Geis, H. I. Smith, B-Y. Tsaur, and J. C. C. Fan, Appl. Phys. Lett. 40, 158 (1982).

    Article  CAS  Google Scholar 

  2. M. W. Geis, H. I. Smith, B-Y.Tsaur, J. C. C. Fan, D. J. Silversmith, and R. W. Mountain, J. Eleetrochem. Soc. 129, 2812 (1982).

    Article  CAS  Google Scholar 

  3. E. W. Maby, M. W. Geis, Y. L. LeCoz, D. J. Silversmith, R. W. Mountain, and D. A. Antoniadis, Electron Dev. Lett. EDL-2, 241 (1981).

    Article  CAS  Google Scholar 

  4. A. B. Limanov and E. I. Givargizov, Mater. Lett. 2, 93 (1983).

    Article  CAS  Google Scholar 

  5. M. Haond, D. Dutartre, and D. Bensahel, in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by V. T. Nguyen and A. T. Cullis (Editions de Physique, Paris, 1985), p. 417.

  6. J. S. Im, H. Tomita, and C. V. Thompson, Appl. Phys. Lett. 51, 685 (1987); J. S. Im, C. K. Chen, C. V. Thompson, M. W. Geis, and H. Tomita, to be published in Silicon on Insulator and Buried Metals in Semiconductors, Mater. Res. Soc. Symp. Proc. (Materials Research Society, Pittsburgh, PA, 1988).

    Article  CAS  Google Scholar 

  7. L. Pfeiffer, A. E. Gelman, K. A. Jackson, K. W. West, and J. L. Batstone, Appl. Phys. Lett. 51, 1256 (1987).

    Article  CAS  Google Scholar 

  8. M. W. Geis, H. I. Smith, and C. K. Chen, J. Appl. Phys. 60, 1152 (1986).

    Article  CAS  Google Scholar 

  9. In this paper, texture refers to crystallographic planes parallel to the plane of the film, and not in the plane of the film. This is termed “restricted fiber texture” by some workers.

  10. H. A. Atwater, H. I. Smith, C. V. Thompson, and M. W. Geis, Mater. Lett. 2, 269 (1984).

    Article  CAS  Google Scholar 

  11. W.G. Hawkins and D. K. Biegelsen, Appl. Phys. Lett. 42, 358 (1983).

    Article  CAS  Google Scholar 

  12. M. W. Geis, H. I. Smith, D. J. Silversmith, R. W. Mountain, and C.V. Thompson, J. Eleetrochem. Soc. 130, 1178 (1983).

    Article  CAS  Google Scholar 

  13. K. A. Bezjian, H. I. Smith, J. M. Carter, and M. W. Geis, J. Electrochem. Soc. 129, 1848 (1982).

    Article  CAS  Google Scholar 

  14. H. A. Wilson, Philos. Mag. 50, 238 (1900).

    Article  Google Scholar 

  15. J. Frenkel, Phys. Z. Sovjetunion 1, 498 (1932).

    CAS  Google Scholar 

  16. W. B. Hillig and D. Turnbull, J. Chem. Phys. 24, 914 (1956).

    Article  CAS  Google Scholar 

  17. H. I. Smith, C. V. Thompson, M. W. Geis, R. A. Lemons, and M. A. Bösch, J. Eleetrochem. Soc. 130, 2050 (1983).

    Article  CAS  Google Scholar 

  18. R.J. Jaccodine, J. Eleetrochem. Soc. 110, 524 (1963).

    Article  CAS  Google Scholar 

  19. G.A. Wolff, J. Eleetrochem. Soc. 110, 1293 (1963).

    Article  Google Scholar 

  20. A. Szilagyi, Ph.D. thesis, Massachusetts Institute of Technology, 1984.

  21. H. A. Atwater, C. V. Thompson, and H. I. Smith, Appl. Phys. Lett. 43, 1126 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwater, H.A., Thompson, C.V. & Smith, H.I. Mechanisms for crystallographic orientation in the crystallization of thin silicon films from the melt. Journal of Materials Research 3, 1232–1237 (1988). https://doi.org/10.1557/JMR.1988.1232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.1232

Navigation