Skip to main content
Log in

Production of 0.1–3 eV reactive molecules by laser vaporization of condensed molecular films: A potential source for beam-surface interactions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A versatile, repetitively pulsed source of translationally fast, reactive molecules is described that is suitable for materials processing experiments. The pulsed beams are generated by excimer laser vaporization of cryogenic molecular films that are continuously condensed on transparent substrates. The generation of fast, energy variable pulsed molecular sources of Cl2 and NO is demonstrated. The most probable translational energies of Cl2 and NO molecules can be reproducibly varied monotonically by adjusting the laser fluence or film thickness. Here, the most probable translational energy is quoted as the energy corresponding to the maximum of the time-of-flight trace. Using laser fluences of 2–25 mJ cm−2 from a 193 nm excimer laser, the most probable translational energies of Cl2 are 0.4–2 eV. Significant fractions of molecules with translational energies greater than 3 eV are observed at the leading edges of the distributions. Very similar results are obtained by vaporizing Cl2 with 248 and 351 nm radiation. Pulses of translationally fast NO molecules are generated in a similar manner; most probable energies from 0.1–0.4 eV, with the fastest molecules up to 0.8 eV, are obtained using laser fluences of 1–11 mJ cm−2 at 193 nm. Approximately 1013−1014 molecules per cm2 of the film are vaporized per laser pulse, depending on film thickness and laser fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dry Etching for Microelectronics, edited by R. A. Powell (Elsevier, Amsterdam, 1984).

  2. Materials Modification and Growth Using Ion Beams, edited by U. J. Gibson, A. E. White, and P. P. Pronko (Materials Research Society, Pittsburgh, PA, 1987).

  3. J. W. Coburn and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).

    Article  CAS  Google Scholar 

  4. J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1979).

    Article  CAS  Google Scholar 

  5. H. F. Winters, J. Vac. Sci. Technol. A 3, 700 (1985).

    Article  Google Scholar 

  6. H. F. Winters, J. Vac. Sci. Technol. B 3, 9 (1985).

    Article  Google Scholar 

  7. T. Mizutani, C. J. Dale, W. K. Chu, and T. M. Mayer, Nucl. In-strum. Methods B 7/8, 825 (1985).

    Article  Google Scholar 

  8. D. J. Oostra, A. Haring, and A. E. deVries, J. Vac. Sci. Technol. B 4, 1278 (1986).

    Article  Google Scholar 

  9. D. J. Oostra, A. Haring, A. E. deVries, F. H. M. Sanders, and G. N. A. Van Veen, Nucl. Instrum. Methods B 13, 556 (1986).

    Article  Google Scholar 

  10. R. A. Zuhr, G. D. Alton, B. R. Appleton, N. Herbots, T. S. Noggle, and S. J. Pennycock, in Ref. 2, p. 243.

  11. B. R. Appleton, S. J. Pennycock, R. A. Zuhr, N. Herbots, and T. S. Noggle, Nucl. Instrum. Methods B 19/20, 975 (1987).

    Article  Google Scholar 

  12. R. A. Zuhr, B. R. Appleton, N. Herbots, B. G. Larson, T. S. Noggle, and S. J. Pennycock, J. Vac. Sci. Technol. A 5, 2135 (1987).

    Article  Google Scholar 

  13. B. W. Dodson, Phys. Rev. B 36, 1068 (1987).

    Article  Google Scholar 

  14. B. J. Garrison, M T. Mitchell, and D. W. Brenner, Chem. Phys. Lett. 146, 553 (1988).

    Article  CAS  Google Scholar 

  15. B. W. Dodson and P. A. Taylor, J. Mater. Res. 2, 805 (1987).

    Article  CAS  Google Scholar 

  16. G. W. Flynn and R. E. Weston, Jr., Ann. Rev. Phys. Chem. 37, 551 (1986).

    Article  CAS  Google Scholar 

  17. N. Abauf, J. B. Anderson, R. P. Andres, J. B. Fenn, and D. G. H. Marsden, Science 155, 997 (1967).

    Article  Google Scholar 

  18. J. F. Friichtenicht, Rev. Sci. Instrum. 45, 51 (1974).

    Article  CAS  Google Scholar 

  19. S. P. Tang, N. G. Utterback, and J. F. Friichtenicht, J. Chem. Phys. 64, 3833 (1976).

    Article  CAS  Google Scholar 

  20. B. G. Wicke, S. P. Tang, and J. F. Friichtenicht, Chem. Phys. Lett. 53, 304 (1977).

    Article  Google Scholar 

  21. B. G. Wicke, J. Chem. Phys. 78, 6036 (1983).

    Article  CAS  Google Scholar 

  22. K. Domen and T. J. Chuang, Phys. Rev. Lett. 59, 1484 (1987).

    Article  CAS  Google Scholar 

  23. I. Harrison, J. C. Polanyi, and P. A. Young, J. Chem. Phys. 89, 1498 (1988).

    Article  CAS  Google Scholar 

  24. N. Nishi, H. Shinohara, and T. Okuyama, J. Chem. Phys. 80, 3898 (1984).

    Article  CAS  Google Scholar 

  25. D. E. Brinza, D. R. Coulter, R. H. Liang, A. Gupta, in Proceedings of the NASA Workshop on Atomic Oxygen Effects, edited by D. E. Brinza (JPL, Pasadena, CA, 1987).

  26. D. Bäuerle, Chemical Processing with Lasers, Springer Series in Materials Science (Springer, Berlin, 1986), Vol. 1.

  27. R. Srinivasan, Science 234, 559 (1986); E. Sutcliffe and R. Srinivasan, J. Appl. Phys. 60, 3315 (1986).

    Article  CAS  Google Scholar 

  28. J. E. Rothenberg and R. Kelly, Nucl. Instrum. Methods B 1, 291 (1984).

    Article  Google Scholar 

  29. R. W. Dreyfus, R. Kelly, and R. E. Walkup, Appl. Phys. Lett. 49, 1478 (1986); M. Eyett and D. Bäuerle, Appl. Phys. Lett. 51, 2054 (1988).

    Article  CAS  Google Scholar 

  30. W. L. Brown, L. J. Lanzerotti, K. J. Marcantonio, R. E. Johnson, and C. T. Reimann, Nucl. Instrum. Methods B 14, 392 (1986).

    Article  Google Scholar 

  31. L. M. Cousins and S. R. Leone (in preparation).

  32. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), p. 185.

    Google Scholar 

  33. M. E. Fajardo, V. A. Apkarian, A. Maustakas, H. Krueyer, and E. Weitz, J. Phys. Chem. 92, 357 (1988).

    Article  CAS  Google Scholar 

  34. M. Suzuki, T. Yokoyama, and M. Ito, J. Chem. Phys. 50, 3392 (1969).

    Article  CAS  Google Scholar 

  35. T. Herzog and G. M. Schwab, Z. Phys. Chem. 66, 190 (1969).

    Article  CAS  Google Scholar 

  36. E. I. Yakovenko, G. B. Serteev, and G. P. Kalinina, Dauk. Akad. Nauk. SSSR 173, 626 (1966).

    Google Scholar 

  37. R. W. Dreyfus, R. Kelly, and R. E. Walkup, Nucl. Instrum. Methods B 23, 557 (1987).

    Article  Google Scholar 

  38. J. P. Cowin, D. J. Auerbach, C. Becker, and L. Wharton, Surf. Sci. 78, 545 (1978).

    Article  CAS  Google Scholar 

  39. N. G. Utterback, S. P. Tang, and J. F. Friichtenicht, Phys. Fluids 19, 900 (1976).

    Article  CAS  Google Scholar 

  40. F. Cottet and J. P. Romain, Phys. Rev. A 25, 576 (1982).

    Article  Google Scholar 

  41. P. E. Dyer and R. Srinivasan, Appl. Phys. Lett. 48, 445 (1986).

    Article  CAS  Google Scholar 

  42. J. C. Carls and J. R. Brock, Opt. Lett. 13, 273 (1988).

    Article  CAS  Google Scholar 

  43. H. Schoeffman, H. Schmidt-Kloiber, and E. Reichel, J. Appl. Phys. 63, 46 (1987).

    Article  Google Scholar 

  44. R. Srinivasan and A. P. Ghosh, Chem. Phys. Lett. 143, 546 (1988).

    Article  CAS  Google Scholar 

  45. I. S. Bitensky and E. S. Parilis, Nucl. Instrum. Methods B 21, 26 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cousins, L.M., Leone, S.R. Production of 0.1–3 eV reactive molecules by laser vaporization of condensed molecular films: A potential source for beam-surface interactions. Journal of Materials Research 3, 1158–1168 (1988). https://doi.org/10.1557/JMR.1988.1158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.1158

Navigation