Skip to main content
Log in

Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The solid-phase epitaxial regrowth of a III–V compound semiconductor by a two-stage reaction between a two-layer metallization and a compound semiconductor substrate is described. The regrowth process begins with a low-temperature reaction between a metal M (e.g. Ni, Pd, or Pt) and a compound semiconductor substrate, AB, to produce an intermediate M, AB or MB, phase. A subsequent reaction at a higher temperature between an overlayer of Si, Ge, Al, or In and the intermediate phase results in the decomposition of the intermediate phase and the epitaxial regrowth of a layer of the compound semiconductor. This regrowth mechanism is verified experimentally for the specific case of the Si/Ni/GaAs system. Rutherford backscattering spectrometry and transmission electron microscopy data show that the ternary phase Nix GaAs, formed during the initial stage of the reaction, decomposes toNiSi and GaAs by reaction with the Si overlayer. The incorporation of the overlayer element into the regrown semiconductor layer is proposed as a mechanism to explain the formation of Ohmic contacts in Si/Pd/n-GaAs, In/Pd/n-GaAs, In/Pt/n-GaAs, and similar two-layer metallization systems on n-GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Christou, Solid-State Electron. 22, 141 (1979).

    Article  CAS  Google Scholar 

  2. J. Ding, J. Washburn, T. Sands, and V. G. Keramidas, Appl. Phys. Lett. 49, 818 (1986).

    Article  CAS  Google Scholar 

  3. A. Piotrowska, A. Guivarc’h, and G. Pelous, Solid-State Electron. 26, 179 (1983) and references therein.

    Article  CAS  Google Scholar 

  4. A. A. Lakhani, J. Appl. Phys. 56, 1888 (1984).

    Article  CAS  Google Scholar 

  5. M. Ogawa, Thin Solid Films 70, 181 (1980).

    Article  CAS  Google Scholar 

  6. A. Lahav, M. Eizenberg, and Y. Komem, Mater. Res. Soc. Symp. Proc. 37, 641 (1985).

    Article  CAS  Google Scholar 

  7. T. Sands, V. G. Keramidas, J. Washburn, and R. Gronsky, Appl. Phys. Lett. 48, 402 (1986).

    Article  CAS  Google Scholar 

  8. T. Sands, C. C. Chang, A. S. Kaplan, V. G. Keramidas, K. M. Krishnan, and J. Washburn, Appl. Phys. Lett. 50, 1346 (1987).

    Article  CAS  Google Scholar 

  9. T. Sands, V. G. Keramidas, A. J. Yu, K. M. Yu, R. Gronsky, and J. Washburn, J. Mater. Res. 2, 262 (1987).

    Article  CAS  Google Scholar 

  10. T. S. Kuan, J. L. Freeouf, P. E. Batson, and E. L. Wilkie, J. Appl. Phys. 58, 1519 (1985).

    Article  CAS  Google Scholar 

  11. T. Sands, V. G. Keramidas, R. Gronsky, and J. Washburn, Mater. Lett. 3, 409 (1985).

    Article  CAS  Google Scholar 

  12. T. Sands, V. G. Keramidas, R. Gronsky, and J. Washburn, Thin Solid Films 136, 105 (1986).

    Article  CAS  Google Scholar 

  13. E. D. Marshall, B. Zhang, L. C. Wang, F. Fang, S. S. Lau, T. Sands, A. S. Kaplan, and T. F. Kuech, paper presented at the 171st Meeting of The Electrochemical Society, Philadelphia, PA, 11 May 1987, Abstract #136.

  14. K. N. Tu and J. W. Mayer, Thin Film—Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), Chap. 10, p. 376.

  15. L. R. Doolittle, Nucl. Instrum. Methods B 9, 344 (1985).

    Article  Google Scholar 

  16. T. Sands, J. P. Harbison, W. K. Chan, S. A. Schwarz, C. C. Chang, C. J. Palmstram, and V. G. Keramidas, Appl. Phys. Lett. 52, 1216 (1988).

    Article  CAS  Google Scholar 

  17. L. H. Allen, L. S. Hung, K. L. Kavanagh, J. R. Phillips, A. J. Yu, and J. W. Mayer, Appl. Phys. Lett. 51, 326 (1987).

    Article  CAS  Google Scholar 

  18. D. C. Marvin, N. A. Ives, and M. S. Leung, J. Appl. Phys. 58, 2659 (1985).

    Article  CAS  Google Scholar 

  19. J. Ding, J. Washburn, T. Sands, and V. G. Keramidas, Inst. Phys. Conf. Ser. 83, 313 (1987).

    Google Scholar 

  20. S. S. Lau (private communication, July 1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sands, T., Marshall, E.D. & Wang, L.C. Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases. Journal of Materials Research 3, 914–921 (1988). https://doi.org/10.1557/JMR.1988.0914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.0914

Navigation