Skip to main content
Log in

The thermal fission-induced crystalline-to-amorphous transformation in U6Fe

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The crystalline-to-amorphous transformation in U6Fe produced by thermal fission fragment damage was studied using resistivity and differential scanning calorimetry. The results are described in terms of a model of radiation-produced defect buildup in the crystalline matrix followed by transformation of small regions to an amorphous phase when a critical local defect concentration is reached. This can occur directly in a single cascade or from cascade overlap. The total resistivity is modeled assuming an inhomogeneous media consisting of a crystalline matrix containing a dose-dependent concentration of defects and amorphous zones. The crystallization behavior is initially, starting at Tc = 388 K, a kinetically limited process of shrinkage of amorphous zones that gradually transforms to nucleation and growth in fully amorphous material at Tc = 555 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Radiat. Eff. 77, 237 (1983).

    Article  Google Scholar 

  2. K. C. Russell, in Proceedings of the International Seminar on Solute Defect Interaction, edited by S. Saimote, G. Kidson, and G. Purdy (Pergamon, Oxford, 1985), p. 317.

    Google Scholar 

  3. D. E. Luzzi and M. E. Meshii, Res. Mechanica 21, 207 (1987).

    CAS  Google Scholar 

  4. Y. Limoge and A. Barbu, Phys. Rev. B 30, 2212 (1984).

    Article  Google Scholar 

  5. H. Mori, H. Fujita, and M. Fujita, Jpn. J. Appl. Phys. 22, L94 (1983).

    Article  Google Scholar 

  6. H. Mori, H. Fujita, M. Tendo, and M. Fujita, Scr. Metall. 18, 783 (1984).

    Article  CAS  Google Scholar 

  7. E. P. Simonen, Nucl. Instrum. Methods B 16, 198 (1986).

    Article  Google Scholar 

  8. D. F. Pedraza, J. Mater. Res. 1, 3 (1986).

    Article  Google Scholar 

  9. D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Scr. Metall. 19, 897 (1985).

    Article  CAS  Google Scholar 

  10. R. Gerling, F. P. Schimansky, and R. Wagner, J. Non-Cryst. Solids 61/62, 919 (1984).

    Article  Google Scholar 

  11. D. M. Parkin and R. O. Elliott, Nucl. Instrum. Methods B 16, 193 (1986).

    Article  Google Scholar 

  12. P. M.-Hemenger, Rev. Sci. Instrum. 44, 698 (1973).

    Article  CAS  Google Scholar 

  13. L. E. Delong, J. G. Huber, K. N. Yang, and M. B. Maple, Phys. Rev. Lett. 51, 312 (1983).

    Article  CAS  Google Scholar 

  14. R. O. Elliott, J. L. Smith, R. S. Finocchiaro, and D. A. Koss, Mater. Sci. Eng. 49, 65 (1981).

    Article  CAS  Google Scholar 

  15. Z. Fisk and A. C. Lawson, Solid State Commun. 13, 277 (1973).

    Article  CAS  Google Scholar 

  16. P. J. Cote and L. V. Meisel, in Glassy Metals I, edited by H. J. Güntherodt and H. Beck (Springer, Berlin, 1981), p. 141.

    Chapter  Google Scholar 

  17. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).

    Article  Google Scholar 

  18. M. B. Brodksy, A. J. Arko, A. R. Harvey, and W. J. Nellis, in The Actinides: Electronic Structure and Related Properties, edited by A. J. Freeman and J. B. Darby, Jr. (Academic, New York, 1974), p. 186.

    Google Scholar 

  19. E. King, J. A. Lee, K. Mendelsson, and D. A. Wigley, Proc. R. Soc. London A 284, 325 (1965).

    Google Scholar 

  20. L. R. Testardi, J. M. Poate, and H. J. Levinstein, Phys. Rev. Lett. 37, 637 (1976).

    Article  CAS  Google Scholar 

  21. R. O. Elliott, D. A. Koss, and B. C. Giessen, Scr. Metall. 14, 1061 (1980).

    Article  CAS  Google Scholar 

  22. R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-Cryst. Solids 76, 281 (1985).

    Article  CAS  Google Scholar 

  23. H. J. Wollenberger, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schumacher, W. Schilling, and J. Diehl (Wiley, New York, 1970), p. 215.

    Google Scholar 

  24. D. E. Lussi, H. Mori, and H. Fujita, Scr. Metall. 18, 957 (1984).

    Article  Google Scholar 

  25. P. Moine, J. P. Riviere, M. O. Ruault, J. Chaumont, A. Pelton, and R. Sinclair, Nucl. Instrum. Methods B 7/8, 20 (1985).

    Article  Google Scholar 

  26. J. L. Brimhall, H. E. Kissinger, and A. R. Pelton, Radiat. Eff. 70, 241 (1985).

    Article  Google Scholar 

  27. E. P. Simonen, Nucl. Instrum. Methods B 16, 198 (1986).

    Article  Google Scholar 

  28. R. Landauer, in Electrical Transport and Optcal Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978), p. 2.

    Google Scholar 

  29. J. R. Dennis and E. B. Hale, J. Appl. Phys. 49, 1119 (1978).

    Article  CAS  Google Scholar 

  30. J. F. Gibbons, Proc. IEEE 60, 1062 (1972).

    Article  CAS  Google Scholar 

  31. G. Vogl and K. Boning, Phys. Status Solidi A 1, K151 (1970).

    Google Scholar 

  32. Y. Quere and F. Nakache, J. Nucl. Mater. 2, 203 (1959).

    Article  Google Scholar 

  33. A. Audouard, A. Benyagoub, L. Thomé, and J. Chaumont, J. Phys. 15, 1237 (1985).

    Article  CAS  Google Scholar 

  34. U. Köster and U. Herold, in Glassy Metals I, edited by H.-J. Giintherodt and H. Beck (Springer, Berlin, 1981), p. 225.

    Chapter  Google Scholar 

  35. K. C. Russell, Adv. Colloid Interface Sci. 13, 205 (1980).

    Article  CAS  Google Scholar 

  36. B. Cantor, in Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier, Lusanne, 1985), p. 595.

    Chapter  Google Scholar 

  37. M. Sakata, N. Cowlam, and H. A. Davies, in the Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, p. 327.

  38. H. Fujita, J. Elec. Mech. Technol. 3, 45 (1986).

    Article  CAS  Google Scholar 

  39. K. F. Kelton and F. Spaepen, Acta Metall. 33, 455 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkin, D.M., Elliott, R.O. The thermal fission-induced crystalline-to-amorphous transformation in U6Fe. Journal of Materials Research 3, 453–460 (1988). https://doi.org/10.1557/JMR.1988.0453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.0453

Navigation