Skip to main content
Log in

Mechanical properties of GaAs crystals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical properties of GaAs crystals grown by the liquid encapsulated Czochralski technique and the boat technique are investigated by means of compression tests. Stressstrain characteristics of a GaAs crystal in the temperature range 400°–500°C are very similar to those of a Si crystal in the temperature range 800°–900°C. This seems to reflect the fact that the dislocation mobility in a GaAs crystal in the former temperature range is comparable to that in a Si crystal in the latter temperature range. Dislocations in GaAs crystals are found to be easily immobilized at an intermediate temperature due to gettering of impurities and/or impurity-point defect complexes. In comparison to a Si crystal, the surface of a GaAs crystal seems to involve irregularities that act easily as effective generation centers for dislocations. Thus the magnitude of the yield stress of an aged GaAs crystal is controlled by the surface condition and is not influenced by the density of dislocations involved in the crystal. The socalled steady state of deformation is realized in a GaAs crystal in the deformation stage after the lower yield point as in Si and Ge crystals. Dislocation distributions in a deformed GaAs crystal observed by transmission electron microscopy is very similar to those in deformed Si and Ge crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander and P. Haasen, Solid State Phys. 22, 28 (1968).

    Google Scholar 

  2. K. Kojima and K. Sumino, Cryst. Lattice Defects 2, 147 (1971).

    CAS  Google Scholar 

  3. K. Sumino and K. Kojima, Cryst. Lattice Defects 2, 159 (1971).

    CAS  Google Scholar 

  4. K. Sumino, S. Kodaka, and K. Kojima, Mater. Sci. Eng. 13, 263 (1974).

    Article  CAS  Google Scholar 

  5. K. Sumino, Mater. Sci. Eng. 13, 269 (1974).

    Article  CAS  Google Scholar 

  6. I. Yonenaga and K. Sumino, Phys. Status Solidi A 50, 685 (1978).

    Article  CAS  Google Scholar 

  7. M. Suezawa, K. Sumino, and I. Yonenaga, Phys. Status Solidi A 51, 217 (1979).

    Article  CAS  Google Scholar 

  8. N. P. Sazhin, M. G. Mil’vidskii, V. B. Osvenskii, and O. G. Stolyarov, Sov. Phys.-Solid State 8, 1223 (1966).

    Google Scholar 

  9. D. Laister and G. M. Jenkins, J. Mater. Sci. 8, 1218 (1973).

    Article  CAS  Google Scholar 

  10. V. Swaminathan and S. M. Copley, J. Am. Ceram. Soc. 58, 482 (1975).

    Article  CAS  Google Scholar 

  11. H. M. Hobgood, S. McGuigan, J. A. Spitnagel, and R. N. Thomas, Appl. Phys. Lett. 48, 1654 (1986).

    Article  CAS  Google Scholar 

  12. S. A Erofeeva and Yu. A. Ossipyan, Sov. Phys.-Solid State 15, 538 (1973).

    Google Scholar 

  13. V. B. Osvenskii, L. P. Knolodnyi, and M. G. Mil’vidskii, Sov. Phys.-Solid State 15, 661 (1973).

    Google Scholar 

  14. S. K. Choi, M. Mihara, and T. Ninomiya, Jpn. J. Appl. Phys. 16, 737 (1977).

    Article  CAS  Google Scholar 

  15. H. Steinhardt and P. Haasen, Phys. Status Solidi A 49, 93 (1978).

    Article  CAS  Google Scholar 

  16. I. Yonenaga, K. Sumino, and K. Yamada, Appl. Phys. Lett. 48, 327 (1986).

    Article  Google Scholar 

  17. J. L. Richards and A. J. Crocker, J. Appl. Phys. 31, 611 (1960).

    Article  CAS  Google Scholar 

  18. M. S. Abrahams, J. Appl. Phys. 35, 3626 (1964).

    Article  CAS  Google Scholar 

  19. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon, Oxford, 1953), p. 56.

    Google Scholar 

  20. K. Sumino, Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett (North-Holland, Amsterdam, 1983), Vol. 14, p. 407.

    Google Scholar 

  21. U. F. Kocks, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip/Progress in Materials Science, edited by B. Chalmers, J. W. Christian, and T. B. Massalski (Pergamon, New York, 1975), Vol. 19, p. 173.

    Google Scholar 

  22. A. Seeger, Kristallplastizität /Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1958), Vol. VII-2, p. 112.

    Google Scholar 

  23. W. G. Johnston, J. Appl. Phys. 33, 2716 (1962).

    Article  CAS  Google Scholar 

  24. I. Yonenaga, M. Takebe, and K. Sumino, in the Proceedings of the International Symposium on Structure and Properties of Dislocations in Semiconductors, Moscow, 1986 (in press).

  25. K. Sumino and I. Yonenaga, Jpn. J. Appl. Phys. 20, L685 (1981).

    Article  CAS  Google Scholar 

  26. S. Iida and K. Ito, J. Electrochem. Soc. 118, 786 (1971).

    Article  Google Scholar 

  27. H. Alexander, Phys. Status Solidi 26, 725 (1968).

    Article  CAS  Google Scholar 

  28. H. Alexander, Phys. Status Solidi 27, 391 (1968).

    Article  CAS  Google Scholar 

  29. I. Yonenaga and K. Sumino, in Ref. 24.

  30. M. Imai and K. Sumino, Philos. Mag. A 47, 599 (1983).

    Article  CAS  Google Scholar 

  31. H. Schaumburg, Philos. Mag. 25, 1429 (1972).

    Article  CAS  Google Scholar 

  32. T. Sekiguchi and K. Sumino in the Proceedings of the 11th Congress on Electron Microscopy, Kyoto (The Japanese Society of Electron Microscopy, Tokyo, 1986), p. 407.

    Google Scholar 

  33. A. G. Cullis, P. D. Augustus, and D. J. Stirland, J. Appl. Phys. 51, 2556 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonenaga, I., Onose, U. & Sumino, K. Mechanical properties of GaAs crystals. Journal of Materials Research 2, 252–261 (1987). https://doi.org/10.1557/JMR.1987.0252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1987.0252

Navigation