Skip to main content
Log in

Crack propagation thresholds: A measure of surface energy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J m−2, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn and L. H. Bolz, J. Am. Ceram. Soc. 53, 543 (1970).

    Article  CAS  Google Scholar 

  2. S. M. Wiederhorn and H. Johnson, J. Am. Ceram. Soc. 56, 192 (1973).

    Article  CAS  Google Scholar 

  3. B. R. Lawn, K. Jakus, and A. C. Gonzalez, J. Am. Ceram. Soc. 68, 25 (1985).

    Article  CAS  Google Scholar 

  4. D. R. Clarke, B. R. Lawn, and D. H. Roach, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1986), Vol. 8, pp. 341–350.

  5. D. H. Roach, D. M. Heuckeroth, and B. R. Lawn, J. Colloid Interface Sci. (in press).

  6. B. R. Lawn, Appl. Phys. Lett. 47, 809 (1985).

    Article  CAS  Google Scholar 

  7. T. A. Michalske, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1983), Vol. 5, pp. 277–289.

  8. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, Orlando, 1985).

    Google Scholar 

  9. K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London Ser. A 324, 301 (1971).

    Article  CAS  Google Scholar 

  10. D. Maugis, J. Mater. Sci. 20, 3041 (1985).

    Article  CAS  Google Scholar 

  11. T. A. Michalske and E. R. Fuller, J. Am. Ceram. Soc. 68, 586 (1985).

    Article  CAS  Google Scholar 

  12. M. Inagaki, K. Urashima, S. Toyomasu, Y. Goto, and M. Sakai, J. Am. Ceram. Soc. 68, 704 (1985).

    Article  CAS  Google Scholar 

  13. J. W. Obreimoff, Proc. R. Soc. London Ser. A 217, 290 (1930).

    Google Scholar 

  14. B. J. Hockey, in Ref. 7, Vol. 6, pp. 637–658.

  15. A. A. Griffith, Philos. Trans. R. Soc. London Ser. A , 163 (1920).

  16. J. R. Rice, J. Mech. Phys. Solids 26, 61 (1978).

    Article  CAS  Google Scholar 

  17. B. R. Lawn, J. Mater. Sci. 10, 469 (1975).

    Article  Google Scholar 

  18. E. R. Fuller, Jr., and R. M. Thomson, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1978), Vol. 4, pp. 507–548.

  19. R. M. Thomson, J. Mater. Sci. 15, 1014 (1980).

    Article  CAS  Google Scholar 

  20. E. R. Fuller, Jr., and R.M. Thomson, J. Mater. Sci. 15, 1027 (1980).

    Article  CAS  Google Scholar 

  21. E. R. Fuller, Jr., R. M. Thomson, and B. R. Lawn, Acta Metall. 28, 1407 (1980).

    Article  CAS  Google Scholar 

  22. A. Chudnovsky and A. Moet, J. Mater. Sci. 20, 630 (1985).

    Article  Google Scholar 

  23. B. R. Lawn, J. Mater. Sci. 12, 1950 (1977).

    Article  CAS  Google Scholar 

  24. B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge U. P., Cambridge, 1975).

    Google Scholar 

  25. D. Broek, Elementary Engineering Fracture Mechanics, (Martinus Nijhoff, The Hague, 1974), 3rd ed.

  26. E. R. Fuller, B. R. Lawn, and R. F. Cook, J. Am. Ceram. Soc. 66, 314 (1983).

    Article  Google Scholar 

  27. B. R. Lawn, D. B. Marshall, G. R. Anstis, and T. P. Dabbs, J. Mater. Sci. 16, 2846 (1981).

    Article  Google Scholar 

  28. D. B. Marshall and B. R. Lawn, J. Am. Ceram. Soc. 63, 532 (1980).

    Article  Google Scholar 

  29. The improved Euler Method, see, for example, E. Kreyszig, Advanced Engineering Mathematics (Wiley, New York, 1972), 3rd ed.

  30. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 532 (1981).

    Article  Google Scholar 

  31. D. B. Marshall, Am. Ceram. Soc. Bull. 59, 551 (1980).

    CAS  Google Scholar 

  32. R. J. Roark and W. C. Young, Formulas for Stress and Strain (McGraw-Hill, Japan, 1976).

    Book  Google Scholar 

  33. R. F. Cook, B. R. Lawn, and G. R. Anstis, J. Mater. Sci. 17, 1108 (1982).

    Article  CAS  Google Scholar 

  34. S. M. Wiederhorn, J. Am. Ceram. Soc. 52, 485 (1969).

    Article  CAS  Google Scholar 

  35. R. F. Cook, Ph.D. thesis, School of Physics, University of New South Wales, Australia, 1985.

  36. R. F. Cook (unpublished).

  37. S. W. Freiman (private communication).

  38. D. H. Roach (unpublished).

  39. J. C. Newman and I. S. Raju, Eng. Fract. Mech. 15, 185 (1981).

    Article  Google Scholar 

  40. R. F. Cook and D. H. Roach, J. Mater. Res. 1, 589 (1986).

    Article  CAS  Google Scholar 

  41. R. F. Cook, B. R. Lawn, and C. J. Fairbanks, J. Am. Ceram. Soc. 68, 604 (1985).

    Article  CAS  Google Scholar 

  42. R. F. Cook, B. R. Lawn, and C. J. Fairbanks, J. Am. Ceram. Soc. 68, 616 (1985).

    Article  CAS  Google Scholar 

  43. T. A. Michalske (unpublished).

  44. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.F. Crack propagation thresholds: A measure of surface energy. Journal of Materials Research 1, 852–860 (1986). https://doi.org/10.1557/JMR.1986.0852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0852

Navigation