Skip to main content
Log in

Electrical and thermal transport properties of the Y1 − x Mx CrO3 system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of substituting divalent metal ions (Mg, Ca, Sr, Ba) for Y in YCrO3 were investigated by electrical conductivity, Seebeck coefficient, and thermal conductivity measurements. The electrical conductivity results were consistent with the hopping-type conduction of a temperature-independent concentration of small polarons, with measured activation energies of 0.18-0.26 eV. The Seebeck coefficient increased nearly linearly with temperature and indicated p-type conductivity. Both electrical conductivity and Seebeck coefficient results show a strong dependence on dopant size (ionic radius) and indicate that the highest carrier concentrations were associated with Ca as the dopant, which is attributed to the similar ionic radii of Ca2+ and Y3+. The thermal conductivity decreased slightly with temperature and dopant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Croft, Aust. J. Chem. 9, 206, (1956).

    Article  CAS  Google Scholar 

  2. W. Rüdorff and E. Stumpp, Z. Naturforsch. Teil B 13, 459 (1958).

    Article  Google Scholar 

  3. J. G. Hooley, Carbon 21, 181 (1983).

    Article  CAS  Google Scholar 

  4. S. Tanuma (private communication).

  5. J. G. Hooley, in Preparation and Crystal Growth of Materials with Layered Structures, edited by R. M. A. Leith (Reidel, Dordrecht, Holland, 1978).

    Google Scholar 

  6. A. Balzarotti and M. Grandolfo, Phys. Rev. Lett. 20, 9 (1968).

    Article  CAS  Google Scholar 

  7. D. L. Greenaway, G. Harbeke, F. Bassani, and E. Tosatti, Phys. Rev. 178, 1340 (1969).

    Article  CAS  Google Scholar 

  8. G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747 (1970).

    Article  Google Scholar 

  9. F. Bassani and G. P. Parravicini, Nuovo Cimento B 50, 95 (1967).

    Article  CAS  Google Scholar 

  10. J. Zupan, Phys. Rev. B 6, 2477 (1972).

    Article  CAS  Google Scholar 

  11. A. G. Freeman and J. P. Larkindale, J. Chem. Soc. A 7, 1307 (1969).

    Google Scholar 

  12. A. G. Freeman and J. P. Larkindale, Inorg. Nucl. Chem. Lett. 5, 937 (1969).

    Article  CAS  Google Scholar 

  13. C. Mugiya, N. Ohigashi, Y. Mori, and H. Inokuchi, Bull. Chem. Soc. Jpn. 43, 287 (1970).

    Article  CAS  Google Scholar 

  14. K. Ohhashi and T. Shinjo, Bull. Inst. Chem. Res. Kyoto Univ. 55, 441 (1977).

    CAS  Google Scholar 

  15. N. Bartlett, R. N. Biagioni, B. W. McQuillan, A. S. Robertson, and A. C. Thompson, J. Chem. Soc. Chem. Comm. 1978, 200.

  16. G. R. Finley and G. H. Fetterley, Ceram. Bull. 31, 141 (1952).

    Google Scholar 

  17. M. B. Khusidman and V. S. Neshpor, Sov. Phys.-Solid State 10, 975 (1968).

    Google Scholar 

  18. A. W. Moore and L. S. Singer, J. Phys. Chem. Solids 33, 343 (1972).

    Article  CAS  Google Scholar 

  19. A. W. Moore, Nature 221, 1133 (1969).

    Article  CAS  Google Scholar 

  20. E. G. Brame, J. L. Margrave, and V. W. Meloche, J. Inorg. Nucl. Chem. 5, 48 (1957).

    Article  CAS  Google Scholar 

  21. D. Geist, in Boron and Refractory Borides, edited by V. I. Matkovish (Springer, Berlin, 1977).

    Google Scholar 

  22. D. Geist and G. Römelt, Solid State Commun. 2, 149 (1964).

    Article  CAS  Google Scholar 

  23. A. Katzir, J. T. Suss, and A. Halperin, Phys. Lett. A 41, 117 (1972).

    Article  CAS  Google Scholar 

  24. A. Katzir, J. T. Suss, A. Zunger, and A. Halperin, Phys. Rev. B 11, 2370 (1975).

    Article  CAS  Google Scholar 

  25. A. Zunger and A. Katzir, Phys. Rev. B 11, 2378 (1975).

    Article  CAS  Google Scholar 

  26. A. Zunger, J. Chem. Phys. 62, 1861 (1975).

    Article  CAS  Google Scholar 

  27. J. J. Markham, in Solid State Physics, Supplement 8, edited by F. Seitz and D. Turnbull (Academic, New York, 1960).

    Google Scholar 

  28. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals (Krieger, Malabar, FL, 1977).

    Google Scholar 

  29. T. Kuzuba, K. Era, T. Ishii, and T. Sato, Solid State Commun. 25, 863 (1978).

    Article  CAS  Google Scholar 

  30. R. Geick, C. H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).

    Article  CAS  Google Scholar 

  31. R. J. Nemanich, S. A. Solin, and R. M. Martin, Phys. Rev. B 23, 6348 (1981).

    Google Scholar 

  32. S. Tanuma and K. Okabe (private communication); Extended Abstract of the Symposium on Graphite Intercalation Compounds, edited by M. S. Dresselhaus, G. Dresselhaus, and S. A. Solin (Materials Research Society, Pittsburgh, PA, 1986), p. 196.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.J., Griffin, C.W. & Bates, J.L. Electrical and thermal transport properties of the Y1 − x Mx CrO3 system. Journal of Materials Research 1, 675–684 (1986). https://doi.org/10.1557/JMR.1986.0675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0675

Navigation