Skip to main content
Log in

On the kinetics of thermal donor formation in silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A model for the kinetic growth of oxygen-related thermal donors in Czochralski silicon at about 450°C is presented. The model, which is based on the work of Suezawa and Sumino, derives forward reaction rates for the electrically active species by comparing analytic expressions for the early-time annealing kinetics with the infrared electronic absorption data. The analytic expressions, which are independent of the chemical structure of each species, result from three assumptions: (1) the donor defects beyond the first donor species (TD-1) are chemically stable at the donor formation temperature, (2) the reactions for the TD-1 and those electrically inactive clusters smaller than TD-1 are in equilibrium, and (3) the oxygen interstitial concentration remains constant for short annealing times. The parametrized values of the rate constants indicate that the forward rates of reaction vary widely between species, with a sharp peak at the reaction which takes the first electrically active species to the second. If the rate constants are taken to be of the form K = 4πRD, where R is the capture radius for the given forward reaction and D represents the effective diffusion coefficient, then the variation between reaction constants may be associated with differences in capture radii between species, with the diffusion coefficient assumed to be the value determined by Stavola et al. [Appl. Phys. Lett. 42, 73 (1983)] for “as-provided” material, which has an activation energy of 1.95 eV. The model is successfully applied to the two available sets of infrared absorption data (the Oeder-Wagner and Suezawa-Sumino data) when differences in the annealing temperatures and initial oxygen concentrations are taken into account. The best-fit parameters found by fitting the analytic expressions are then applied to a set of chemical reaction equations which characterize the formation rates of specific oxygen aggregates. The use of such a set of coupled, nonlinear differential equations, which must be solved numerically, introduces free parameters for the oxygen clusters smaller than the first thermal donor. It is shown that the assignments of a thermal donor core containing two, three, four, or five oxygen atoms are all capable of fitting the experimental data. This result indicates that a best fit to the kinetic data cannot be used to argue for a specific thermal donor core. Finally, the authors discuss possible mechanisms for the enhanced values of the capture radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Fuller, N. B. Ditzenberger, N. B. Hannay, and E. Buehler, Phys. Rev. 96, 833 (1954).

    CAS  Google Scholar 

  2. W. Kaiser, H. L. Frisch, and H. Reiss, Phys. Rev. 112, 1546 (1958).

    Article  CAS  Google Scholar 

  3. C. S. Fuller and R. A. Logan, J. Appl. Phys. 28, 1427 (1957).

    Article  CAS  Google Scholar 

  4. J. W. Corbett, R. S. McDonald, and G. D. Watkins, J. Phys. Chem. Solids 25, 873(1964).

    Article  CAS  Google Scholar 

  5. K. Graff, E. Gallrath, S. Ades, G. Goldbach, and G. Tolg, Solid State Electron. 16, 887 (1973).

    Article  CAS  Google Scholar 

  6. P. Gaworzewski and K. Schmalz, Phys. Stat. Sol. A 55, 699 (1979).

    Article  CAS  Google Scholar 

  7. B. Pajot, H. Compain, J. Lerouille, and B. Clerjaud, Physica 117B and 118B, 110(1983).

  8. R. Oeder and P. Wagner, in Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett (North-Holland, New York, 1983), p. 107.

    Google Scholar 

  9. M. Suezawa and K. Sumino, Mater. Lett. 2, 85 (1983).

    Article  CAS  Google Scholar 

  10. M. Suezawa and K. Sumino, Phys. Stat. Sol. A 82, 235 (1984).

    Article  CAS  Google Scholar 

  11. A. Ourmazd, W. Schröter, and A. Bourret, J. Appl. Phys. 56, 1670 (1984).

    Article  CAS  Google Scholar 

  12. M. Stavola, J. R. Patel, L. C. Kimerling, and P. E. Freeland, Appl. Phys. Lett. 42, 73 (1983).

    Article  CAS  Google Scholar 

  13. T. R. Waite, J. Chem. Phys. 28, 103 (1958).

    Article  CAS  Google Scholar 

  14. J. W. Corbett, H. L. Frisch, and L. C. Snyder, Mater. Lett. 2, 209 (1984).

    Article  CAS  Google Scholar 

  15. J. T. Borenstein, J. W. Corbett, M. Herder, S. N. Sahu, and L. C. Snyder, J. Phys. C 19, 2893 (1986).

    Article  CAS  Google Scholar 

  16. J. T. Borenstein and J. W. Corbett, Phys. Lett. A 115, 55 (1986).

    Article  CAS  Google Scholar 

  17. D. Helmreich and E. Sirtl, in Semiconductor Silicon, edited by H. R. Huff and E. Sirtl (Electrochemical Society, Princeton, NJ, 1977), p. 626.

    Google Scholar 

  18. U. Gösele and T. Y. Tan, Appl. Phys. A 28, 79 (1982).

    Article  Google Scholar 

  19. R. C. Newman, A. S. Oates, and F. M. Livingston, J. Phys. C 16, 1667 (1983).

    Google Scholar 

  20. L. C. Snyder and J. W. Corbett, Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr. (Metallurgical Society of AIME, Coronado, CA, 1984), p. 693.

  21. W. W. Keller, J. Appl. Phys. 55, 3471 (1984).

    Article  CAS  Google Scholar 

  22. J. Robertson and A. Ourmazd, Appl. Phys. Lett. 46, 559 (1985).

    Article  CAS  Google Scholar 

  23. J. L. Lindström, B. Svensson, and J. W. Corbett, Phys. Stat. Sol. A 91, K107 (1985).

    Article  Google Scholar 

  24. W. Kohn, in Solid State Physics, Vol. 5, edited by F. Seitz and D. Turnbull (Academic, New York, 1957), p. 257.

  25. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

    Article  CAS  Google Scholar 

  26. R. A. Faulkner, Phys. Rev. 184, 713 (1969).

    Article  CAS  Google Scholar 

  27. A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981).

    Article  Google Scholar 

  28. J. T. Borenstein, Ph.D. thesis, SUNY/Albany, 1986.

  29. H. J. Rath, P. Stallhofer, D. Huber, and B. F. Schmitt, J. Electrochem. Soc. 131, 1920 (1984).

    Article  CAS  Google Scholar 

  30. P. Wagner, MRS Proceedings, Symposium K, Boston, 1985 (to be published).

  31. W. Kaiser, Phys. Rev. 105, 1751 (1957).

    Article  CAS  Google Scholar 

  32. V. Cazcarra and P. Zunino, J. Appl. Phys. 51, 4206 (1980).

    Article  CAS  Google Scholar 

  33. W. Kaiser, P. H. Keck, and C. F. Lange, Phys. Rev. 101, 1254 (1956).

    Article  Google Scholar 

  34. T. Y. Tan, R. Kleinhenz, and C. P. Schneider, in Oxygen, Carbon, Hydrogen and Nitrogen in Silicon, edited by S. J. Pearton, J. W. Corbett, J. C. Mikkelsen, and S. J. Pennycook (Materials Research Society, Pittsburgh, 1986).

    Google Scholar 

  35. R. C. Newman, J. Phys. C 18, L967 (1985).

    Article  CAS  Google Scholar 

  36. S. N. Sahu (unpublished).

  37. H. Reiss, J. Appl. Phys. 30, 1141 (1959).

    Article  CAS  Google Scholar 

  38. J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946).

    Google Scholar 

  39. J. Lothe and G. M. Pound, in Nucleation, edited by A. C. Zettlemoyer (Dekker, New York, 1969), p. 109.

    Google Scholar 

  40. D. Peak, H. L. Frisch, and J. W. Corbett, Radiat. Effects 11, 149 (1971).

    Article  CAS  Google Scholar 

  41. D. Peak and J. W. Corbett, Phys. Rev. B 5, 1220 (1972).

    Article  Google Scholar 

  42. D. Peak and J. W. Corbett, J. Stat. Phys. 17, 97 (1977).

    Article  Google Scholar 

  43. D. Peak and J. W. Corbett, Radiat. Effects 36, 197 (1978).

    Article  CAS  Google Scholar 

  44. G. S. Oehrlein, J. L. Lindstrom, and S. A. Cohen, in Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr. (Metallurgical Society of AIME, Coronado, CA, 1984), p. 701.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borenstein, J.T., Peak, D. & Corbett, J.W. On the kinetics of thermal donor formation in silicon. Journal of Materials Research 1, 527–536 (1986). https://doi.org/10.1557/JMR.1986.0527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0527

Navigation