Skip to main content
Log in

Raman scattering study of the staging kinetics in the c-face skin of pyrolytic graphite-H2SO4

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Raman scattering from the ∼ 1600 cm−1 graphitic phonons is used to study the stage evolution of graphite-H2SO4 in the first ∼ 1000 Å of the bulk during electrochemical intercalation. The Raman results are compared to staging kinetics in the deep bulk studied previously by 00/ x-ray diffraction. For low cell currents, which establish quasiequilibrium conditions, the c-face surface of the highly oriented pyrolytic graphite (HOPG) in contact with the reactant rapidly changes stage index to n − 1 just as the bulk completes stage n. We conclude that the intercalant must cross the c-face plate boundary of the HOPG, probably entering at either grain boundaries, microcracks, or steps in the plate surface. During stage transitions, the Raman lines are observed to remain Lorentzian in shape, with constant width, indicating that an ordered stage n − 1 compound grows at the expense of an ordered stage n compound. In studies of partially submerged HOPG plates, the surface above the acid level is found to stage last, although the plate surface just below the acid level stages first. Lateral diffusion of the sulfate anions from regions below, to regions above the acid level, is apparently impeded for reasons that are not understood. During portions of the electrochemical reaction requiring only hydrogen rearrangement in the intercalate layers (“overcharging”), Raman spectra taken from above and below the acid level are observed to evolve in concert, indicating the protons are not similarly impeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The stage index n refers to the number of carbon (C) layers located between successive intercalate (1) layers (e.g., a stage 3 compound has the periodic stacking sequence …ICCCICCC… . For recent reviews of graphite intercalation compounds see M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981); and S. A. Solin, Adv. Chem. Phys. 49, 455 (1982).

    Article  CAS  Google Scholar 

  2. J. O. Bessenhard, E. Wudy, H. Moewald, J. J. Nickl, W. Biberacher, and W. Foag, Synth. Met. 7, 185 (1983).

    Article  Google Scholar 

  3. A. Metrot and J. E. Fischer, Synth. Met. 3, 201 (1981).

    Article  CAS  Google Scholar 

  4. M. S. Dresselhaus and G. Dresselhaus, in Topics in Applied Physics, edited by M. Cardona and G. Guntherodt (Springer, Berlin, 1982), Vol. 51, Chap. 2.

    Google Scholar 

  5. A preliminary account of this work has been previously published: C. H. Olk, V. Yeh, F. J. Holler, and P. C. Eklund, in Materials Research Society Proceedings, edited by M. S. Dresselhaus, G. Dresselhaus, J. E. Fischer, and M. J. Moran (Elsevier, New York, 1983), Vol. 20, p. 259.

    Google Scholar 

  6. A. W. Moore, in Chemistry and Physics of Carbon, edited by P. L. Walker and P. A. Thrower (Dekker, New York, 1973), Vol. 11, p. 69.

    Google Scholar 

  7. J. G. Hooley. Mat. Sci. Eng. 31, 17 (1977).

    Article  CAS  Google Scholar 

  8. P. Schaufhautl, J. Prakt. Chem. 21, 155 (1841).

    Google Scholar 

  9. S. Aronson, C. Frishberg, and G. Frankl, Carbon 9, 715 (1971).

    Article  CAS  Google Scholar 

  10. S. Aronson, S. LeMont, and J. Weiner, Inorg. Chem. 10. 1296 (1971).

    Article  CAS  Google Scholar 

  11. W. Rudorf, Adv. Inorg. Chem. Nucl. Chem. 1, 223 (1959).

    Google Scholar 

  12. J. Giergiel, Ph.D. thesis, University of Kentucky, 1982.

  13. Reference 2 and references cited therein.

  14. M. J. Bottonley, G. S. Parry, A. R. Ubbelohde, and D. Young, J. Chem. Soc. 1963, 5674.

  15. W. R. Salaneck, C. F. Brucker. J. E. Fischer, and A. Metrot, Phys. Rev. B 24, 5037 (1981); see also the comments in Phys. Rev. B 28 (1982): L. B. Ebert and E. Appelman, p. 1637, and the reply by W. R. Salenck, C. F. Brucker, J. E. Fischer, and A. Metrot, p. 1639.

    Article  CAS  Google Scholar 

  16. R. Fujii and K. Matsuo, Tanso 73, 44 (1973).

    Article  Google Scholar 

  17. E. MacRae, A. Metrot, P. Willman, and A. Herold, Physica B 99, 541 (1980).

    Article  Google Scholar 

  18. A. Metrot, P. Willmann, E. McRae, and A. Herold, Carbon 17, 182 (1979).

    Article  CAS  Google Scholar 

  19. P. C. Eklund, E. T. Arakawa, J. L. Zarestky, W. A. Kamitakahara, and G. D. Mahan, Synth. Met. 12, 97 (1985).

    Article  CAS  Google Scholar 

  20. H. Zabel and M. E. Misenheimer, Phys. Rev. B 24, 1443 (1983).

    Google Scholar 

  21. R. Nishitani, Y. Uno, and H. Suematsu, Phys. Rev. B 27, 6572 (1983).

    Article  CAS  Google Scholar 

  22. W. A. Kamitakahara, P. C. Eklund, and J. L. Zarestky (private communication).

  23. P. C. Eklund, J. G. Spolar, G. D. Mahan and E. T. Arakawa, D. M. Hoffman, and J. M. Zhang, Solid State Commun. 57(8), 567 (1986).

    Article  CAS  Google Scholar 

  24. C. H. Olk and P. C. Eklund (private communication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eklund, P.C., Olk, C.H., Holler, F.J. et al. Raman scattering study of the staging kinetics in the c-face skin of pyrolytic graphite-H2SO4. Journal of Materials Research 1, 361–367 (1986). https://doi.org/10.1557/JMR.1986.0361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0361

Navigation