Skip to main content
Log in

Electrical and optical transport in undoped and indium-doped zinc oxide films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrical conduction in undoped and indium-doped ZnO films in as-deposited, vacuum-annealed and oxygen-annealed states has been studied. The as-deposited and oxygen-annealed films contain a large density (≥ 1017 m−2) of trap states due to chemisorbed oxygen at the grain boundaries. The role of these trap states has been analyzed in terms of the grain boundary carrier trapping model. The vacuum-annealed films are free of chemisorbed oxygen, and the conduction in these films is controlled by scattering due to ionized impurities and grain boundary barriers. In the case of undoped ZnO films, intrinsic trap states at the grain boundaries also play a significant role. The optical behavior of all films in the UV and visible regions is dielectric-like and the optical bandgap shows a dependence on free carrier concentration that is controlled by a bandgap narrowing effect due to electron-electron and electron-impurity interactions as well as the Moss-Burstein effect of bandgap widening. In the IR region the optical behavior is metal-like due to free-electron effects and follows the Drude model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hirschwald in cooperation with P. Bonascwicz, L. Ernst, M. Grade, D. Hofmann, S. Krebs, R. Littbarski, G. Neumann, M. Grunze, D. Kolb, and H. J. Schulz, Current Topics Mater. Sci. 7, 143 (1981).

    Google Scholar 

  2. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  CAS  Google Scholar 

  3. S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films 122, 31 (1984).

    Article  CAS  Google Scholar 

  4. S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films 125, 179 (1985).

    Article  CAS  Google Scholar 

  5. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, L280 (1984).

    Article  Google Scholar 

  6. S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films 108, 333 (1983).

    Article  CAS  Google Scholar 

  7. R. E. Denton, R. D. Campbell, and S. G. Tomlin, J. Phys. D 5, 852 (1972).

    Article  CAS  Google Scholar 

  8. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974), Chap. 9.

    Google Scholar 

  9. J. Orton and M. J. Powel, Rep. Prog. Phys. 43, 1265 (1980).

    Article  Google Scholar 

  10. M. M. Mundrah, K. C. Saraswat, and T. I. Kamins, IEEE Trans. Electron Dev. ED-28, 1163 (1981).

    Article  Google Scholar 

  11. A. P. Roth and D. F. Williams, J. Appl. Phys. 52, 6685 (1981).

    Article  CAS  Google Scholar 

  12. M. L. Tarng, J. Appl. Phys. 49, 4069 (1978).

    Article  CAS  Google Scholar 

  13. V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 71, 374 (1947).

    Article  CAS  Google Scholar 

  14. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  CAS  Google Scholar 

  15. J. W. Orton, J. Goldsmith, J. A. Chapman, and M. J. Powel, J. Appl. Phys. 53, 1602 (1982).

    Article  CAS  Google Scholar 

  16. S. Major, A. Banerjee, K. L. Chopra, and K. C. Nagpal, Thin Solid Films (to be published).

  17. T. L. Tansley, D. F. Neely, and C. P. Foley, Thin Solid Films 117, 19 (1984).

    Article  CAS  Google Scholar 

  18. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).

    Article  CAS  Google Scholar 

  19. A. P. Roth, J. B. Webb, and D. F. Williams, Phys. Rev. B 25, 7836 (1982).

    Article  CAS  Google Scholar 

  20. I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engstrom, Phys. Rev. B 30, 3240 (1984).

    Article  CAS  Google Scholar 

  21. E. Burstein, Phys. Rev. 93, 632 (1954); T. S. Moss, Proc. R. Soc. London, Ser. B 67, 775 (1954).

    Article  CAS  Google Scholar 

  22. G. D. Mahan, J. Appl. Phys. 51, 2634 (1980).

    Article  CAS  Google Scholar 

  23. K. F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 (1981).

    Article  CAS  Google Scholar 

  24. P. E. Schmid, Phys. Rev. B 23, 5531 (1981).

    Article  CAS  Google Scholar 

  25. R. E. Dietz, J. J. Hopfleld, and D. G. Thomas, J. Appl. Phys. 32, 2282 (1961).

    Article  CAS  Google Scholar 

  26. G. Bogner, J. Phys. Chem. Solids 19, 235 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Major, S., Banerjee, A. & Chopra, K.L. Electrical and optical transport in undoped and indium-doped zinc oxide films. Journal of Materials Research 1, 300–310 (1986). https://doi.org/10.1557/JMR.1986.0300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0300

Navigation