Skip to main content
Log in

Dynamic cleavage in ductile materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ductile materials are found to sustain brittle fracture when the crack moves at high speed. This fact poses a paradox under current theories of dislocation emission, because even at high velocities, these theories predict ductile behavior. A theoretical treatment of time-dependent emission and cleavage is given which predicts a critical velocity above which cleavage can occur without emission. Estimates suggest that this velocity is in the neighborhood of the sound velocity. The paper also discusses the cleavage condition under mixed mode loading, and concludes that the cleavage condition involves solely the mode I loading, with possible sonic emission under such loadings

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly, W. Tyson, and A. H. Cottrell, Philos. Mag. 29, 295 (1967).

    Google Scholar 

  2. J. Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

    CAS  Google Scholar 

  3. S. J. Chang and S. M. Ohr, J. Appl.Phys. 52, 7174 (1981).

    CAS  Google Scholar 

  4. J. Weertman, Philos. Mag. 43, 1103 (1981).

    CAS  Google Scholar 

  5. I.-H. Lin and R. Thomson, Acta Metall. 34, 187 (1986).

    CAS  Google Scholar 

  6. S. M. Ohr, Mater. Sci. Eng. (to be published).

  7. H. G. F. Wilsdorf, Mater. Sci. Eng. 59. 1 (1983).

    CAS  Google Scholar 

  8. H. Vehoff and P. Neumann, Acta Metall. 28, 265 (1980).

    CAS  Google Scholar 

  9. B. Hockey, Fracture Mechanics in Ceramics, edited by R. Bradt, D. Hasselman, and F. Lange (Plenum, New York, 1983), Vol. 6, p. 637.

    Google Scholar 

  10. E. N. Pugh, in Atomistics of Fracture, edited by R. M. Latanision and J. R. Pickins (Plenum, New York, 1983), p. 209.

    Google Scholar 

  11. K. Sieradsky, R. L. Sabatini, and R. C. Newman, Met. Trans. 15A, 1941 (1984).

    Google Scholar 

  12. E. Smith, Proceedings of the Conference on Physical Basis of Yield and Fracture (Institute of Physics and the Physical Society, London, 1966), p. 36.

    Google Scholar 

  13. J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1982).

    Google Scholar 

  14. J. Eshelby, Physics of Strength and Plasticity, E. Orowan Anniversary Volume, edited by A. Argon (MIT Press, Cambridge, 1969), p. 263.

    Google Scholar 

  15. L. B. Freund, Mech. Phys. Sol. 20, 129 (1972).

    Google Scholar 

  16. J. Eshelby, Solid State Phys. 3, 79 (1956).

    CAS  Google Scholar 

  17. C. Atkinson and J. Eshelby, Int. J. Fracture 4, 3 (1968).

    Google Scholar 

  18. G. C. Sih, Int. J. Fracture 4, 51 (1967).

    Google Scholar 

  19. J. R. Radok, Quart. J. Appl. Math. 14, 289 (1956).

    Google Scholar 

  20. X. Markenskoff, Dislocation Modeling of Physical Systems, edited by M. Ashby, R. Bullough, C. Hartley, and J. Hirth (Pergamon, New York, 1981), p. 244.

    Google Scholar 

  21. L. B. Freund, Int. J. Eng. Sci. 12, 179 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, IH., Thomson, R.M. Dynamic cleavage in ductile materials. Journal of Materials Research 1, 73–80 (1986). https://doi.org/10.1557/JMR.1986.0073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0073

Navigation