Skip to main content
Log in

Thermodynamic aspects of amorphous phase formation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The glass-forming ability of the three alloy systems Co–Zr, Cu–Zr, and Ni–Zr has been analyzed for three distinct production routes: (1) liquid quenching, (2) vapor deposition, and (3) solidstate reaction. Using the free energy and heats of formation curves obtained from the thermodynamic characterization of the respective alloy systems, a satisfactory rationale can be obtained for amorphous phase formation by all three routes. The analysis shows that while amorphous phase formation by quenching from the high-temperature liquid is clearly dependent on factors such as quench rate and the value TG/TM, it is the low-temperature stability of the amorphous phase relative to the other crystalline structures that enables amorphous phases to be formed by both vapor deposition and solid-state reaction. The underlying free energy curves indicate the interesting possibility of a supersaturation sequence in the nucleation of an amorphous phase by solid-state reaction. The principles underlying thermodynamic characterizations are briefly discussed, and a characterization for Co–Zr is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

    Article  CAS  Google Scholar 

  2. N. Saunders, CALPHAD J. 9(4), 301 (1985).

    Article  Google Scholar 

  3. J. J. van Laar, Z. Phys. Chem. 63, 216 (1908); 64, 257 (1908).

    Google Scholar 

  4. L. Kaufman, in Phase Stability in Metals and Alloys, edited by P. Rudman, J. Stringer, and R. I. Jaffee (McGraw-Hill, New York, 1967), p. 125.

    Google Scholar 

  5. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (Academic, New York, 1970).

    Google Scholar 

  6. T. G. Chart, J. F. Counsell, G. P. Jones, W. Slough, and P. J. Spencer, Int. Met. Rev. 20, 57 (1975).

    Article  CAS  Google Scholar 

  7. CALPHAD (Computer Calculation of Phase Diagrams) Journal, in general.

  8. A. Prince, Alloy Phase Equilibria (Elsevier, Amsterdam, 1966).

    Book  Google Scholar 

  9. J. C. Gachon and J. Hertz, CALPHAD 7(1), 1 (1983).

    Article  CAS  Google Scholar 

  10. R. P. Elliot, Constitution of Binary Alloys, 1st Supplement (McGraw-Hill, New York, 1965).

    Google Scholar 

  11. F. A. Shunk, Constitution of Binary Alloys, 2nd Supplement (McGraw-Hill, New York, 1969).

    Google Scholar 

  12. S. K. Bataleva, V. V. Kuprina, V. V. Burnasheva, V. Ya. Markiv, G. N. Romani, and S. M. Kuznetsova, Vestn. Mosk. Univ. 5, 557 (1970).

    Google Scholar 

  13. A. P. Miodownik, CALPHAD J. 1(1), 133 (1977).

    CAS  Google Scholar 

  14. N. Saunders, A. P. Miodownik, and L. E. Tanner, in Rapidly Quenched Metals V, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985), p. 191.

    Google Scholar 

  15. N. Saunders and A. P. Miodownik, presented at CALPHAD XIII, Grenoble, France, May 1984.

  16. U. Kambli, M. Von Allmen, N. Saunders, and A. P. Miodownik, Appl. Phys. A 36, 189 (1985).

    Google Scholar 

  17. N. Saunders and A. P. Miodownik (to be published).

  18. H. A. Davies, Phys. Chem. Glasses 17, 159 (1976).

    CAS  Google Scholar 

  19. D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972).

    Article  CAS  Google Scholar 

  20. J. W. Christian, Theory of Phase Transformations in Metals and Alloys (Pergamon, Oxford, 1965), p. 377.

    Google Scholar 

  21. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    CAS  Google Scholar 

  22. J. C. Baker and J. W. Cahn, Solidification (ASM, Metals Park, OH, 1975), p. 23.

    Google Scholar 

  23. W. J. Boettinger, S. R. Coriell, and R. K. Sekerka, Mater. Sci. Eng. 65, 27 (1984).

    CAS  Google Scholar 

  24. P. Ramachandrarao, B. Cantor, and R. W. Cahn, J. Mater. Sci. 12, 2488 (1977).

    CAS  Google Scholar 

  25. K. H. J. Buschow, J. Phys. F 14, 593 (1984).

    CAS  Google Scholar 

  26. K. H. J. Buschow, J. Appl. Phys. 52, 3319 (1981).

    CAS  Google Scholar 

  27. P. G. Zielinski, J. Ostetek, M. Kijek, and H. Matyja, in Rapidly Quenched Metals III, edited by B. Cantor (Metals Society, London, 1978), p. 337.

    Google Scholar 

  28. A. F. Marshall, R. G. Walmsley, and D. A. Stevenson, Mater. Sci. Eng. 63, 215 (1984).

    CAS  Google Scholar 

  29. R. J. Felder and J. J. Hauser, Mater. Lett. 2, 232 (1984).

    CAS  Google Scholar 

  30. A. J. Drehman and D. Tumbull, Scr. Metall. 15, 543 (1981).

    Article  CAS  Google Scholar 

  31. J. H. Perepezko, D. H. Rasmussen, I. E. Andersson, and C. R. Lopez, Jr., in Solidification and Casting (Metals Society, London, 1977), p. 169.

    Google Scholar 

  32. Y. Nishi, T. Morohoshi, and M. Kawakami, in Rapidly Quenched Metals IV, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Tokyo, 1981), p. 111.

    Google Scholar 

  33. R. G. Walmsley, Ph. D. thesis, Stanford University, 1982.

  34. K. Samwer, A. Regenbrecht, and H. Schroder, Rapidly Quenched Metals V, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985), p. 1577.

    Google Scholar 

  35. A. Ravex, J. C. Lasjaunias, and O. Bethoux, Sol. State Commun. 40, 853 (1981); Physica B and C 107B, 397 (1981).

    Article  CAS  Google Scholar 

  36. A. F. Marshall, Y. S. Lee, and D. A. Stevenson, Acta. Metall. 31, 1225 (1983).

    Article  CAS  Google Scholar 

  37. N. Saunders, Ph. D. thesis, University of Surrey, Guildford, United Kingdom, 1984.

  38. N. Saunders and A. P. Miodownik, CALPHAD J. 9, (3) 283 (1985).

    Article  CAS  Google Scholar 

  39. J. Lennard-Jones, Proc. R. Soc. London Ser. A 163, 127 (1963).

    Google Scholar 

  40. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  41. B. Cantor and R. W. Cahn, Acta Metall. 24, 845 (1976).

    Article  CAS  Google Scholar 

  42. H. S. Chen and D. Turnbull, J. Chem. Phys. 48, 2560 (1968).

    Article  CAS  Google Scholar 

  43. B. Cantor and P. Ramanchadrarao, Rapid Quenched Metals IV, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Tokyo, 1981), p. 291.

    Google Scholar 

  44. N. Saunders, Int. J. Rapid Solidification 1(4), 327 (1985).

    CAS  Google Scholar 

  45. A. J. Kerns, D. E. Polk, R. Ray, and B. C. Giessen, Mater. Sci. Eng. 38, 49 (1979).

    Article  CAS  Google Scholar 

  46. I. Ansara, A. Pasturel, and K. H. J. Buschow, Phys. Stat. Sol. A 69, 447 (1982).

    Article  CAS  Google Scholar 

  47. M. P. Henaff, C. Colinet, A. Pasturel, and K. H. J. Buschow, J. Appl. Phys. 56, 307 (1984).

    Article  CAS  Google Scholar 

  48. M. Atzmon, J. D. Verhoeven, E. D. Gibson, and W. L. Johnson, Appl. Phys. Lett. 45, 1052 (1984).

    Article  CAS  Google Scholar 

  49. B. M. Clemens, W. L. Johnson, and R. B. Schwarz, in Proceedings of the 5th International Conference on Liquid and Amorphous Metals (North-Holland, Amsterdam, 1984), p. 817.

    Google Scholar 

  50. A. R. Miedema and P. F. de Chatel, Theory of Alloy Phase Formation, edited by L. H. Bennett (ASM, Metals Park, OH, 1979), p. 344.

    Google Scholar 

  51. R. W. Balluffi and J. M. Blakely, Thin Sol. Films 25, 363 (1975).

    CAS  Google Scholar 

  52. J. E. Baglin and J. M. Poate, in Thin Films: Interdiffusion and Reactions, edited by J. Poate, K. Tu, and J. Mayer (Wiley, New York, 1978), p. 305.

    Google Scholar 

  53. D. Gupta and P. S. Ho, Thin Sol. Films 72, 399 (1980).

    CAS  Google Scholar 

  54. T. Chart and F. Putland, CALPHAD J. 3(1), 9 (1979).

    Google Scholar 

  55. L. Kaufman, Z. Metallkd. 64, 250 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, N., Miodownik, A.P. Thermodynamic aspects of amorphous phase formation. Journal of Materials Research 1, 38–46 (1986). https://doi.org/10.1557/JMR.1986.0038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0038

Navigation