Skip to main content
Log in

The effect of surface coating on iron-oxide nanoparticle arsenic adsorption

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The presence of arsenic in groundwater and other drinking water sources presents a notable public health concern. The utilization of iron-oxide nanomaterials as arsenic adsorbents has shown promising results both in laboratory and field conditions. This study focuses on characterizing the performance of nanoparticles prepared by different synthetic methods and with different surface coatings in arsenic removal. Poly (acrylic acid), polyethylene glycol, polyethylenimine were used to stabilize iron-oxide nanoparticles prepared by thermal decomposition to an aqueous solution. The effect that each polymer has on the materials was evaluated in batch and PEG was found to provide the best performance. To implement the nanoparticles in the field, a continuous flow column study was carried out by depositing the nanoparticles in poly(methyl methacrylate) (PMMA) beads. Even when the surface coatings are required to prevent nanoparticles from agglomerating, further efforts to deposit nanoparticles on a supporting material are required.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available within the article or its Supplementary Materials.

References

  1. J. Briffa, E. Sinagra, R. Blundell, Heliyon 6, e04691 (2020)

    Article  Google Scholar 

  2. E. Shaji, M. Santosh, K.V. Sarath, P. Prakash, V. Deepchand, B.V. Divya, Geosci. Front. 12, 101079 (2021)

    Article  CAS  Google Scholar 

  3. P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, B. Van der Bruggen, Chemosphere 92, 157 (2013)

    Article  CAS  Google Scholar 

  4. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Arab. J. Chem. 12, 4897 (2019)

    Article  CAS  Google Scholar 

  5. S. Dixit, J.G. Hering, Environ. Sci. Technol. 37, 4182 (2003). https://doi.org/10.1021/es030309t

    Article  CAS  Google Scholar 

  6. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211–212, 317 (2012)

    Article  Google Scholar 

  7. N. Savage, M.S. Diallo, J. Nanopart. Res. 7, 331 (2005)

    Article  CAS  Google Scholar 

  8. A. Mendoza-Garcia, C.M. Masterson, A. Prakash, M.L. Nakamoto, D. Garcia-Rojas, C. Ozsoy-Keskinbora, D.C. Bell, V.L. Colvin, A.C.S. Appl, Nano Mater. 2, 667 (2019)

    CAS  Google Scholar 

  9. W.W. Yu, J.C. Falkner, C.T. Yavuz, V.L. Colvin, Chem. Commun. 20, 2306 (2004)

    Article  Google Scholar 

  10. C. Murray, D. Norris, M. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  11. A. Prakash, H. Zhu, C.J. Jones, D.N. Benoit, A.Z. Ellsworth, E.L. Bryant, V.L. Colvin, ACS Nano 3, 2139 (2009)

    Article  CAS  Google Scholar 

  12. W.W. Yu, E. Chang, J.C. Falkner, J. Zhang, A.M. Al-Somali, C.M. Sayes, J. Johns, R. Drezek, V.L. Colvin, J. Am. Chem. Soc. 129, 2871 (2007)

    Article  CAS  Google Scholar 

  13. W.W. Yu, E. Chang, C.M. Sayes, R. Drezek, V.L. Colvin, Nanotechnology 17, 4483 (2006)

    Article  CAS  Google Scholar 

  14. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8, 2209 (1996). https://doi.org/10.1021/cm960157j

    Article  CAS  Google Scholar 

  15. Z. Zarnegar, J. Safari, Green Chem. Lett. Rev. 10, 235 (2017)

    Article  CAS  Google Scholar 

  16. O.A. Noqta, B.K. Sodipo, A.A. Aziz, Funct. Compos. Struct. 2, 045005 (2020)

    Article  Google Scholar 

  17. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001)

    Article  CAS  Google Scholar 

  18. D. Maggioni, P. Arosio, F. Orsini, A.M. Ferretti, T. Orlando, A. Manfredi, E. Ranucci, P. Ferruti, G. D’Alfonso, A. Lascialfari, Dalton Trans. 43, 1172 (2014)

    Article  CAS  Google Scholar 

  19. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 3, 891 (2004)

    Article  CAS  Google Scholar 

  20. W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3, 397 (2008)

    Article  CAS  Google Scholar 

  21. D.N. Benoit, H. Zhu, M.H. Lilierose, R.A. Verm, N. Ali, A.N. Morrison, J.D. Fortner, C. Avendano, V.L. Colvin, Anal. Chem. 84, 9238 (2012)

    Article  CAS  Google Scholar 

  22. S.R. Chowdhury, E.K. Yanful, J. Environ. Manag. 91, 2238 (2010)

    Article  CAS  Google Scholar 

  23. A. Wojciechowska, Z. Lendzion-Bieluń, Molecules 25, 4117 (2020)

    Article  CAS  Google Scholar 

  24. J.W. Farrell, J. Fortner, S. Work, C. Avendano, N.I. Gonzalez-Pech, R. Zárate Araiza, Q. Li, P.J.J. Álvarez, V. Colvin, A. Kan, M. Tomson, Environ. Eng. Sci. 31, 393 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia I. Gonzalez-Pech.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molloy, A.L., Andrade, M.F.C., Escalera, G. et al. The effect of surface coating on iron-oxide nanoparticle arsenic adsorption. MRS Advances 6, 867–874 (2021). https://doi.org/10.1557/s43580-021-00138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00138-6

Navigation