Skip to main content
Log in

Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics

  • Impact
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Creating an insulation material combining crack and delamination resistance, mechanical flexibility, strong adhesion, and biocompatibility is vital for implantable bioelectronic devices of all types. Here, we describe a nanocomposite material addressing these technological challenges that have been designed using blueprints from biomaterials that combine a similar set of properties. These composites are based on aramid nanofibers (ANFs), whose mechanical properties are complemented by the epoxy resins with strong adhesion to various surfaces. The nanoscale structure of the ANF/epoxy nanocomposite coating replicates the nanofibrous organization of human cartilage, which is known for its exceptional toughness and delamination resistance. The structural analogy between percolating networks of cartilage and ANF was demonstrated numerically using graph theory (GT) analysis. The match of multiple GT indexes indicated the near-identical organization pattern of cartilage and ANF/epoxy nanocomposite. When compared with the standard insulating material for bioelectronics, Parylene C, the ANF/epoxy nanocomposite exceeds its performance characteristics in respect to delamination resistance, interfacial adhesion, tissue biocompatibility, electrode cross-talk and inflammatory response. This study opens the possibility of GT-informed design of high-performance insulation materials suitable for different types of electronics for neural engineering and other biomedical applications. GT analysis also makes possible structural characterization of complex biological and biomimetic materials. While the design of the electronics for implantable devices has substantially advanced, the materials for their long-term insulation have not. Delamination of insulation materials constantly results in device failure. The essential problem of this field is finding a material that affords the combination of multiple contrarian properties that need to be resolved to afford future advances in this area. Here, we report a new nanocomposite material that combines durability, toughness, and flexibility, as well as excellent adhesion, biocompatibility, and low inflammatory response. This study opens the road for a large family of materials suitable for different types of implantable electronics for neural engineering and other biomedical applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. T.W. Berger, M. Baudry, R.D. Brinton, J. Liaw, V.Z. Marmarelis, A.Y. Park, B.J. Sheu, A.R. Tanguay, Brain-implantable biomimetic electronics as the next era in neural prosthetics. Proc. IEEE 89, 993 (2001)

    Article  CAS  Google Scholar 

  2. W.F. House, Cochlear implants. Ann. Otol. Rhinol. Laryngol. 85, 1 (1976)

    Article  Google Scholar 

  3. J.S. Perlmutter, J.W. Mink, Deep brain stimulation. Annu. Rev. Neurosci. 29, 229 (2006)

    Article  CAS  Google Scholar 

  4. K.D. Wise, Silicon microsystems for neuroscience and neural prostheses. IEEE Eng. Med. Biol. Mag. 24, 22 (2005)

    Article  Google Scholar 

  5. E.M. Maynard, C.T. Nordhausen, R.A. Normann, The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102, 228 (1997)

    Article  CAS  Google Scholar 

  6. N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, R.V. Bellamkonda, G.A. Silva, N.W. Shi Kam, F. Patolsky, L. Ballerini, Nanomaterials for neural interfaces. Adv. Mater. 21, 3970 (2009)

    Article  CAS  Google Scholar 

  7. J. Viventi, D.-H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco, Y.-S. Kim, A.E. Avrin, V.R. Tiruvadi, S.-W. Hwang, A.C. Vanleer, D.F. Wulsin, K. Davis, C.E. Gelber, L. Palmer, J. Van Der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J.A. Rogers, B. Litt, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599 (2011)

    Article  CAS  Google Scholar 

  8. D.C. Rodger, A.J. Fong, W. Li, H. Ameri, A.K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P.R. Menon, E. Meng, J.W. Burdick, R.R. Roy, V. Reggie Edgerton, J.D. Weiland, M.S. Humayun, Y.-C. Tai, Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuators B Chem. 132, 449 (2008)

    Article  CAS  Google Scholar 

  9. T.D. Yoshida Kozai, N.B. Langhals, P.R. Patel, X. Deng, H. Zhang, K.L. Smith, J. Lahann, N.A. Kotov, D.R. Kipke, Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065 (2012)

    Article  CAS  Google Scholar 

  10. S. Sommakia, H.C. Lee, J. Gaire, K.J. Otto, Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. Curr. Opin. Solid State Mater. Sci. 18, 319 (2014)

    Article  CAS  Google Scholar 

  11. B.A. Hollenberg, C.D. Richards, R. Richards, D.F. Bahr, D.M. Rector, A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Methods 153, 147 (2006)

    Article  Google Scholar 

  12. T. Stieglitz, M. Gross, Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sens. Actuators B Chem. 83, 8 (2002)

    Article  CAS  Google Scholar 

  13. D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(80), 507 (2008)

    Article  CAS  Google Scholar 

  14. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.-C. Hwang, M.R. Zakin, B. Litt, J.A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511 (2010)

    Article  CAS  Google Scholar 

  15. S. Takeuchi, T. Suzuki, K. Mabuchi, H. Fujita, 3D flexible multichannel probe array, in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) 14, 367 (2003)

  16. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1 (2005)

    Article  Google Scholar 

  17. K.D. Wise, J.B. Angell, A. Starr, An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME 17, 238 (1970)

    Article  CAS  Google Scholar 

  18. L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. BME 33, 248 (1986)

    Article  CAS  Google Scholar 

  19. C.J. Bettinger, Recent advances in materials and flexible electronics for peripheral nerve interfaces. Bioelectron. Med. 4, 6 (2018)

    Article  Google Scholar 

  20. J.A. Goding, A.D. Gilmour, U.A. Aregueta-Robles, E.A. Hasan, R.A. Green, Living bioelectronics: strategies for developing an effective long-term implant with functional neural connections. Adv. Funct. Mater. 28, 1702969 (2018)

    Article  CAS  Google Scholar 

  21. G. Ye, X. Wang, Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups. Biosens. Bioelectron. 26, 772 (2010)

    Article  CAS  Google Scholar 

  22. D.T. Simon, E.O. Gabrielsson, K. Tybrandt, M. Berggren, Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 116, 13009 (2016)

    Article  CAS  Google Scholar 

  23. H. Zhang, P.R. Patel, Z. Xie, S.D. Swanson, X. Wang, N.A. Kotov, Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano 7, 7619 (2013)

    Article  CAS  Google Scholar 

  24. F. He, R. Lycke, M. Ganji, C. Xie, L. Luan, Ultraflexible neural electrodes for long-lasting intracortical recording. IScience 23, 101387 (2020)

    Article  CAS  Google Scholar 

  25. J.W. Salatino, K.A. Ludwig, T.D.Y. Kozai, E.K. Purcell, Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862 (2017)

    Article  CAS  Google Scholar 

  26. P.R. Patel, H. Zhang, M.T. Robbins, J.B. Nofar, S.P. Marshall, M.J. Kobylarek, T.D.Y. Kozai, N.A. Kotov, C.A. Chestek, Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13(6), 066002 (2016)

    Article  Google Scholar 

  27. R.G.H. Wilke, G.K. Moghadam, N.H. Lovell, G.J. Suaning, S. Dokos, Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J. Neural Eng. 8, 46016 (2011)

    Article  CAS  Google Scholar 

  28. Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2, 1003 (2008)

    Article  Google Scholar 

  29. S. Takeshi, G. Kopla, S.-I. Hayashi, L.R. Bailey, G. Llanos, R. Wilensky, B.D. Klugherz, G. Papandreou, P. Narayan, M.B. Leon, A.C. Yeung, F. Tio, P.S. Tsao, R. Falotico, A.J. Carter, Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104, 1188 (2001)

    Article  Google Scholar 

  30. B. Scheller, C. Hehrlein, W. Bocksch, W. Rutsch, D. Haghi, U. Dietz, M. Böhm, U. Speck, Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 355, 2113 (2006)

    Article  CAS  Google Scholar 

  31. M. Zilberman, J.J. Elsner, Antibiotic-eluting medical devices for various applications. J. Control. Release 130, 202 (2008)

    Article  CAS  Google Scholar 

  32. Z.J. Deng, S.W. Morton, E. Ben-Akiva, E.C. Dreaden, K.E. Shopsowitz, P.T. Hammond, Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7, 9571 (2013)

    Article  CAS  Google Scholar 

  33. Z. Zhang, J. Nong, Y. Zhong, Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants. J. Neural Eng. 12, 046015 (2015)

    Article  Google Scholar 

  34. W. He, G.C. McConnell, R.V. Bellamkonda, Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3, 316 (2006)

    Article  Google Scholar 

  35. W. He, G. McConnell, T. Schneider, R.V. Bellamkonda, A novel anti-inflammatory surface for neural electrodes. Adv. Mater. 19, 3529 (2007)

    Article  CAS  Google Scholar 

  36. C.-H. Kim, S.-H. Cha, S.C. Kim, M. Song, J. Lee, W.S. Shin, S.-J. Moon, J.H. Bahng, N.A. Kotov, S.-H. Jin, Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano 5(4), 3319 (2011)

    Article  CAS  Google Scholar 

  37. X. Liu, D.B. McCreery, R.R. Carter, L.A. Bullara, T.G.H. Yuen, W.F. Agnew, Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans. Rehabil. Eng. 7, 315 (1999)

    Article  CAS  Google Scholar 

  38. T. Stieglitz, H. Beutel, M. Schuettler, J.-U. Meyer, Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices 2, 283 (2000)

    Article  Google Scholar 

  39. E. Meng, Y.-C. Tai, Parylene etching techniques for microfluidics and bioMEMS, in 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 18, 568 (2005)

  40. J.P. Seymour, Y.M. Elkasabi, H.-Y. Chen, J. Lahann, D.R. Kipke, The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 30, 6158 (2009)

    Article  CAS  Google Scholar 

  41. J. Ortigoza-Diaz, K. Scholten, C. Larson, A. Cobo, T. Hudson, J. Yoo, A. Baldwin, A. Weltman Hirschberg, E. Meng, Techniques and considerations in the microfabrication of Parylene C microelectromechanical systems. Micromachines 9, 422 (2018)

    Article  Google Scholar 

  42. J.H. Chang, B. Lu, Y. Tai, Adhesion-enhancing surface treatments for parylene deposition, in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), p. 390, IEEE, Beijing, China

  43. J. Ortigoza-Diaz, K. Scholten, E. Meng, Characterization and modification of adhesion in dry and wet environments in thin-film parylene systems. J. Microelectromech. Syst. 27, 874 (2018)

    Article  CAS  Google Scholar 

  44. J. Lahann, Vapor-based polymer coatings for potential biomedical applications. Polym. Int. 55, 1361 (2006)

    Article  CAS  Google Scholar 

  45. H. Yasuda, Q.S. Yu, M. Chen, Interfacial factors in corrosion protection: an EIS study of model systems. Prog. Org. Coat. 41, 273 (2001)

    Article  CAS  Google Scholar 

  46. F.G. Yamagishi, Investigations of plasma-polymerized films as primers for Parylene-C coatings on neural prosthesis materials. Thin Solid Films 202, 39 (1991)

    Article  CAS  Google Scholar 

  47. A.K. Sharma, H. Yasuda, Effect of glow discharge treatment of substrates on parylene-substrate adhesion. J. Vac. Sci. Technol. 21, 994 (1982)

    Article  CAS  Google Scholar 

  48. M. Liger, D.C. Rodger, Y.-C. Tai, Robust parylene-to-silicon mechanical anchoring, in The Sixteenth Annual International Conference on Micro Electro Mechanical Systems. MEMS-03 Kyoto. IEEE (2003), p. 602

  49. R.P. von Metzen, T. Stieglitz, The effects of annealing on mechanical, chemical, and physical properties and structural stability of Parylene C. Biomed. Microdevices 15, 727 (2013)

    Article  CAS  Google Scholar 

  50. Q. Zhang, H.R. Phillips, A. Purchel, J.K. Hexum, T.M. Reineke, Sustainable and degradable epoxy resins from trehalose, cyclodextrin, and soybean oil yield tunable mechanical performance and cell adhesion. ACS Sustain. Chem. Eng. 6, 14967 (2018)

    Article  CAS  Google Scholar 

  51. J. Ramier, M. Boubaker, M. Guerrouache, V. Langlois, D. Grande, E. Renard, Novel routes to epoxy functionalization of PHA-based electrospun scaffolds as ways to improve cell adhesion. J. Polym. Sci., Part A: Polym. Chem. 52, 816 (2014)

    Article  CAS  Google Scholar 

  52. P. Kim, D.H. Kim, B. Kim, S.K. Choi, S.H. Lee, A. Khademhosseini, R. Langer, K.Y. Suh, Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16, 2420 (2005)

    Article  CAS  Google Scholar 

  53. A. Dolatshahi-Pirouz, T. Jensen, D.C. Kraft, M. Foss, P. Kingshott, J.L. Hansen, A.N. Larsen, J. Chevallier, F. Besenbacher, Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano 4, 2874 (2010)

    Article  CAS  Google Scholar 

  54. A.D.B.L. Ferreira, P.R.O. Nóvoa, A.T. Marques, Multifunctional material systems: a state-of-the-art review. Compos. Struct. 151, 3 (2016)

    Article  Google Scholar 

  55. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203 (2006)

    Article  CAS  Google Scholar 

  56. P. Tatsidjodoung, N. Le Pierrès, L. Luo, A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 18, 327 (2013)

    Article  Google Scholar 

  57. M. Annadhasan, S. Basak, N. Chandrasekhar, R. Chandrasekar, Next-generation organic photonics: the emergence of flexible crystal optical waveguides. Adv. Opt. Mater. 8, 2000959 (2020)

    Article  CAS  Google Scholar 

  58. G.-H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon, S. Yoo, D. Myung, S.H. Yun, Z. Bao, S.K. Hahn, Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149 (2020)

    Article  Google Scholar 

  59. N.S. Ha, G. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 181, 107496 (2020)

    Article  CAS  Google Scholar 

  60. G. Zan, Q. Wu, Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 28(11), 2099 (2016)

    Article  CAS  Google Scholar 

  61. M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5, 6945 (2011)

    Article  CAS  Google Scholar 

  62. K. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23(16), 2072 (2013)

    Article  CAS  Google Scholar 

  63. M. Yang, K. Cao, B. Yeom, M.D. Thouless, A. Waas, E.M. Arruda, N.A. Kotov, Aramid nanofiber-reinforced transparent nanocomposites. J. Compos. Mater. 49, 1873 (2015)

    Article  CAS  Google Scholar 

  64. A. Sharma, A.J. Licup, K.A. Jansen, R. Rens, M. Sheinman, G.H. Koenderink, F.C. MacKintosh, Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584 (2016)

    Article  CAS  Google Scholar 

  65. A.J. Holder, N. Badiei, K. Hawkins, C. Wright, P.R. Williams, D.J. Curtis, Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter 14, 574 (2018)

    Article  CAS  Google Scholar 

  66. T. Raimondo, S. Puckett, T.J. Webster, Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. Int. J. Nanomed. 5, 647 (2010)

    CAS  Google Scholar 

  67. N. Chen, L. Tian, A.C. Patil, S. Peng, I.H. Yang, N.V. Thakor, S. Ramakrishna, Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 14, 59 (2017)

    Article  CAS  Google Scholar 

  68. L. Xu, X. Zhao, C. Xu, N.A. Kotov, Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30, 1 (2017)

    Google Scholar 

  69. Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003)

    Article  CAS  Google Scholar 

  70. N.A. Kotov, I. Dékány, J.H. Fendler, Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637 (1996)

    Article  CAS  Google Scholar 

  71. P. Mohammadi, A.S. Aranko, C.P. Landowski, O. Ikkala, K. Jaudzems, W. Wagermaier, M.B. Linder, Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci. Adv. 5, eaaw2541 (2019)

    Article  CAS  Google Scholar 

  72. W. Zhang, C. Ye, K. Zheng, J. Zhong, Y. Tang, Y. Fan, M.J. Buehler, S. Ling, D.L. Kaplan, Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12, 6968 (2018)

    Article  CAS  Google Scholar 

  73. W. Jiang, Z. Qu, P. Kumar, D. Vecchio, Y. Wang, Y. Ma, J.H. Bahng, K. Bernardino, W.R. Gomes, F.M. Colombari, A. Lozado-Blanco, M. Veksler, E. Marino, A. Simon, C. Murray, S.R. Muniz, A.F. de Moura, N.A. Kotov, Emergence of complexity in hierarchically organized chiral particles. Science 80(368), 642 (2020)

    Article  CAS  Google Scholar 

  74. M. Wang, D. Vecchio, C. Wang, A. Emre, X. Xiao, Z. Jiang, P. Bogdan, Y. Huang, N.A. Kotov, Biomorphic structural batteries for robotics. Sci. Robot. 5, eaba1912 (2020)

    Article  Google Scholar 

  75. M.E.J. Newman, Mixing patterns in networks. Phys. Rev. E 67, 26126 (2003)

    Article  CAS  Google Scholar 

  76. E. Spain, A. McCooey, K. Joyce, T.E. Keyes, R.J. Forster, Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA. Sens. Actuators B Chem. 215, 159 (2015)

    Article  CAS  Google Scholar 

  77. R. Voo, M. Mariatti, L.C. Sim, Technique, properties of epoxy nanocomposite thin films prepared by spin coating. J. Plast. Film Sheeting 27, 331 (2011)

    Article  CAS  Google Scholar 

  78. K. Norrman, A. Ghanbari-Siahkali, N.B. Larsen, Studies of spin-coated polymer films. Annu. Rep. Sect. C Phys. Chem. 101, 174 (2005)

    Article  CAS  Google Scholar 

  79. S. Shiratori, T. Kubokawa, Double-peaked edge-bead in drying film of solvent-resin mixtures. Phys. Fluids 27, 102105 (2015)

    Article  CAS  Google Scholar 

  80. M.S.K. Mutyala, A. Javadi, J. Zhao, T.C. Lin, W. Tang, X. Li, Scalable platform for batch fabrication of micro/nano devices on engineering substrates of arbitrary shapes and sizes. Procedia Manuf. 1, 205 (2015)

    Article  Google Scholar 

  81. L. Li, G. Zhang, C. Tuan, K. Moon, R. Sun, Formation of polymer insulation layer (liner) on through silicon vias (TSV) with high aspect ratio over 5:1 by direct spin coating, in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016), p. 1713

  82. S. Nie, H. Qin, C. Cheng, W. Zhao, S. Sun, B. Su, C. Zhao, Z. Gu, Blood activation and compatibility on single-molecular-layer biointerfaces. J. Mater. Chem. B 2, 4911 (2014)

    Article  CAS  Google Scholar 

  83. I. Martinelli, V. De Stefano, P.M. Mannucci, Inherited risk factors for venous thromboembolism. Nat. Rev. Cardiol. 11, 140 (2014)

    Article  CAS  Google Scholar 

  84. J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 99 (2007)

    Article  Google Scholar 

  85. A. Hagberg, D. Schult, P. Swart, in Proceedings of the Python in Science Conference (SciPy): Exploring Network Structure, Dynamics, and Function using NetworkX (2008), p. 11

  86. C. Cheng, S. Li, S. Nie, W. Zhao, H. Yang, S. Sun, C. Zhao, General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive Dopamine.Biomacromolecules 13, 4236 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.Z. prepared ANF composites, performed characterization, and co-wrote the paper; A.M. and J.L. performed deposition of ParyleneC films and performed their characterization; A.E. prepared ANF composites for GT analysis; S.R., C.C., and J.Z assisted H.Z. in preparation and analyzed the performance of insulators; D.V. wrote the Python script for StructuralGT and carried out GT calculations of indexes; N.A.K developed GT description of biomimetic materials, analyzed the data on their structural description and functional performance, and co-wrote the paper.

Corresponding authors

Correspondence to Huanan Zhang or Nicholas A. Kotov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Vecchio, D., Emre, A. et al. Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin 46, 576–587 (2021). https://doi.org/10.1557/s43577-021-00071-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00071-x

Keywords

Navigation