Skip to main content
Log in

Structural Fingerprinting of Nanocrystals: Advantages of Precession Electron Diffraction, Automated Crystallite Orientation and Phase Maps

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Strategies for the structurally identification of nanocrystals from Precession Electron Diffraction (PED) patterns in a Transmission Electron Microscope (TEM) are outlined. A single-crystal PED pattern may be utilized for the structural identification of an individual nanocrystal. Ensembles of nanocrystals may be fingerprinted structurally from “powder PED patterns”. Highly reliable “crystal orientation & structure” maps may be obtained from automatically recorded and processed scanning-PED patterns at spatial resolutions that are superior to those of the competing electron backscattering diffraction technique of scanning electron microscopy. The analysis procedure of that automated technique has recently been extended to Fourier transforms of high resolution TEM images, resulting in similarly effective mappings. Open-access crystallographic databases are mentioned as they may be utilized in support of our structural fingerprinting strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moeck P.; Fraundorf P.: Zeits. Kristallogr. 222 (2007) 634–645, expanded version at: arXiv:0706.2021

    CAS  Google Scholar 

  2. Moeck P.; Rouvimov S.: in: Nano Particle Drug Delivery Systems: II Formulation and Characterization, Pathak Y. and Thassu D. (editors), Informa Health Care, New York, 2009, 268–311.

  3. Moeck P.; Rouvimov S.: Zeits. Kristallogr. (2009) in press

  4. Rouvimov S.; Rauch E. F.; Moeck P.; Nicolopoulos S.: Proc. NSTI 2009, Houston, Texas, in press

  5. Moeck P.; Rouvimov S.: Proc. NSTI 2009, Houston, Texas, in press

  6. Moeck P.; Rouvimov S.; Nicolopoulos S.: Proc. NSTI 2009, Houston, Texas, in press

  7. Rauch E. F.; Véron M.; Portillo J.; Bultreys D.; Maniette Y.; Nicolopoulos S.: Microscopy and Analysis, Issue 93, November 2008, S5–S8.

    Google Scholar 

  8. Bjorge R.: MSc thesis, Portland State University, May 9, 2007; Journal of Dissertation Vol. 1 (2007), open access: http://www.scientificjournals.org/journals2007/j_of_dissertation.htm

  9. Moeck P.; Bjorge R.: in: Quantitative Electron Microscopy for Materials Science, Eds. Snoeck E., DuninBorkowski R., Verbeeck J., and Dahmen U., Mater. Res. Soc. Symp. Proc. Vol. 1026E (2007), paper 1026–C17.

  10. Moeck P.; Bjorge R.; Mandell E.; Fraundorf P.: Proc. NSTI-Nanotech Vol. 4 (2007) 93–96, (www.nsti.org, ISBN 1-4200637-6-6).

  11. Rauch E. F.; Rouvimov S.; Nicolopoulos S.; Moeck P.: Proc. Microscopy & Microanalysis 2009, Richmond, Virginia, in press

  12. Zou X. D.; Hovmöller S.: Acta Cryst. A 64 (2008) 149–160; open-access: http://journals.iucr.org/a/issues/2008/01/00/issconts.html

    Article  CAS  Google Scholar 

  13. Dorset D. L.: Structural Electron Crystallography, Plenum Press, New York and London, 1995.

    Book  Google Scholar 

  14. Vainshtein B. K.; Zvyagin B. B.: in: International Tables for Crystallography, Vol. B, Reciprocal space, Ed. Shmueli U., 2nd edition, Kluver Academic Publ., Dordrecht, 2001, pp. 306–320.

    Google Scholar 

  15. Vainshtein B. K.: Structure Analysis by Electron Diffraction, Pergamon Press Ltd., Oxford, 1964.

    Google Scholar 

  16. Blackman M.: Proc. Royal Society (London) A 173 (1939) 68–82.

  17. Vincent R.; Midgley P.: Ultramicroscopy 53 (1994) 271–282.

    Article  CAS  Google Scholar 

  18. Avilov A.; Kuligin K.; Nicolopoulos S.; Nickolskiy M.; Boulahya K.; Portillo J.; Lepeshov G.; Sobolev B.; Collette J. P.; Martin N.; Robins A. C.; Fischione P.: Ultramicroscopy 107 (2007) 431–444.

    Article  CAS  Google Scholar 

  19. Klechkovskaya V. V.; Imamov R. M.: Crystallography Reports 46 (2001) 534–549.

    Article  Google Scholar 

  20. Morniroli J. P.; Redjaïmia A.: J. Microsc. 227 (2007) 157–171.

    Article  Google Scholar 

  21. Archer P. I.; Radovanovic P. V.; Heald S. M.; Gamelin D. R.: J. Am. Chem. Soc. 127 (2005) 14479–14487.

    Article  CAS  Google Scholar 

  22. Bryan J. D.; Heald S. M.; Chambers S. A.; Gamelin D. R.: J. Am. Chem. Soc,. 126 (2004) 11640–11647.

    Article  CAS  Google Scholar 

  23. Cowley J. M.: Progress in Materials Science, Vol. 13, 267–321, Eds. Chalmers B., and Hume-Rothery W., Pergamon Press, Oxford, 1967.

    Article  Google Scholar 

  24. Faber J.; Fawcett T.: Acta Cryst. B 58 (2002) 325–332, http://www.icdd.com

    Article  CAS  Google Scholar 

  25. Mighell A. D.; Karen V. L.: J. Res. Natl. Inst. Stand. Technol. 101 (1996) 273–280; NIST Standard Reference Database 3, http://www.nist.gov/srd/nist3.htm

    Article  CAS  Google Scholar 

  26. http://www.fiz-karlsruhe.de/icsd.html, about 3, 600 entry on-line demo version freely accessible at: http://icsdweb.fiz-karlsruhe.de/

  27. http://www.nist.gov/srd/nist83.htmand http://www.nist.gov/srd/nist84.htm (also free download of an about 3, 200 inorganics entry demo version of ref. [27]

  28. http://www.crystalimpact.com/pcd/Default.htm, about 2,600 entry demo version for free download at: http://www.crystalimpact.com/pcd/download.htm

  29. http://www.crystallography.netmirrored at: http://cod.ibt.lt (in Lithuania), http://cod.ensicaen.fr/ (in France) and http://nanocrystallography.org (in Oregon, USA), also accessible under a different search surface at: http://fireball.phys.wvu.edu/cod/ (in West Virginia, USA), some 75, 000 data sets

  30. Gražulis S.; Chateigner D.; Downs R. T.; Yokochi A. F. T.; Quirós M.; Lutterotti L.; Manakova E.; Butkus J.; Moeck P.; Le Bail A.: J. Appl. Cryst., submitted

  31. http://nanocrystallography.research.pdx.edu/CIF-searchable/cod.php, data on some 20, 000 crystals

  32. http://rruff.geo.arizona.edu/AMS/amcsd.php, data on some 10, 000 minerals

  33. http://crystdb.nims.go.jp, data on some 30, 000 metals and alloys

  34. http://en.wikipedia.org/wiki/Crystallographic_database

  35. http://nanocrystallography.research.pdx.edu/index.py/group_links

Download references

Acknowledgments

This research was supported by awards from the Oregon Nanoscience and Microtechnologies Institute. Additional support from Portland State University's Venture Development Fund is acknowledged. Prof. Daniel R. Gamelin of the University of Washington at Seattle and Dr. Klaus H. Pecher of the Pacific Northwest National Laboratory are thanked for the cassiterite, rutile, and iron-oxide samples. Dr. Kurt Langworthy of the University of Oregon's Center for Advanced Materials Characterization in Oregon is thanked for his assistance in operating the aberration-corrected FEI Titan 80-300 microscope. Prof. Marie Cheynet of the Institut National Polytechnique de Grenoble is thanked for the HRTEM image of Fig. 6 (which was taken with an aberration-corrected FEI Titan 80-300 microscope in Grenoble) from PbSe nanocrystals that were produced by Dr. Odile Robbe of the Université de Lille.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeck, P., Rouvimov, S., Rauch, E.F. et al. Structural Fingerprinting of Nanocrystals: Advantages of Precession Electron Diffraction, Automated Crystallite Orientation and Phase Maps. MRS Online Proceedings Library 1184, 1–12 (2009). https://doi.org/10.1557/PROC-1184-GG03-07

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1184-GG03-07

Navigation