Advertisement

Journal of Flow Chemistry

, Volume 2, Issue 2, pp 52–55 | Cite as

Synthesis of Juglone (5-Hydroxy-1,4-Naphthoquinone) in a Falling Film Microreactor

  • Oksana Shvydkiv
  • Carolin Limburg
  • Kieran Nolan
  • Michael Oelgemöller
Full Paper

Abstract

Photooxygenation of 1,5-dihydroxynaphthalene to Juglone was studied in a falling film microreactor. Moderate conversion rates of up to 31% were achieved after just 160 s of exposure to visible light. In contrast, batch reactions gave much lower conversions of up to 14% after a prolonged time period of 10 min. The difference in performance is explained by the superior light penetration in the microfilm and the large gas—liquid contact area.

Keywords

photooxygenation falling film microreactor microflow photochemistry juglone 

References and Notes

  1. 1.
    for recent reviews, see (a) Oelgemöller, M.; Shvydkiv, O. Molecules 2011, 7, 1313–1322Google Scholar
  2. 1.(b)
    Coyle, E. E.; Oelgemöller, M. Photochem. Photobiol. Sci. 2008, 7, 1313–1322CrossRefGoogle Scholar
  3. (c).
    Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T. Pure Appl. Chem. 2007, 79, 1959–1968.CrossRefGoogle Scholar
  4. 2.
    Braun, A. M.; Maurette, M.; Oliveros, E. Photochemical Technology, Wiley: Chichester, UK, 1991.Google Scholar
  5. 3.
    For selected examples form our and other laboratories, see (a) Shvydkiv, O.; Yavorskyy, A.; Tan, S. B.; Nolan, K.; Hoftmann, N.; Youssef, A.; Oelgemöller, M. Photochem. Photobiol. Sci. 2011, 10, 1399–1404CrossRefGoogle Scholar
  6. (b).
    Shvydkiv, O.; Nolan, K.; Oelgemöller, M. Beilstein J. Org. Chem. 2011, 7, 1055–1063CrossRefGoogle Scholar
  7. (c).
    Yavorskyy, A.; Shvydkiv, O.; Nolan, K.; Hoffmann, N.; Oelgemöller, M. Tetrahedron Lett. 2011, 52, 278–280CrossRefGoogle Scholar
  8. (d).
    Shvydkiv, O.; Yavorskyy, A.; Nolan, K.; Youssef, A.; Riguet, E.; Hoffmann, N.; Oelgemöller, M. Photochem. Photobiol. Sci. 2010, 9, 1601–1603CrossRefGoogle Scholar
  9. (e).
    Shvydkiv, O.; Gallagher, S.; Nolan, K.; Oelgemöller, M. Org. Lett. 2010, 12, 5170–5173CrossRefGoogle Scholar
  10. (f).
    Fukuyama, T.; Hino, Y.; Kamata, N.; Ryu, I. Chem. Lett. 2004, 33, 1430–1431CrossRefGoogle Scholar
  11. (g).
    Tsutsumi, K.; Terao, K.; Yamaguchi, H.; Yoshimura, S.; Morimoto, T.; Kakiuchi, K.; Fukuyama, T.; Ryu, I. Chem. Lett. 2010, 39, 828–829CrossRefGoogle Scholar
  12. (h).
    Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.; Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 4007–4009CrossRefGoogle Scholar
  13. (i).
    Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Chem. Commun. 2010, 46, 8722–8724.CrossRefGoogle Scholar
  14. 4.(a)
    Lévesque, F.; Seeberger, P. H. Org. Lett. 2011, 13, 5008–5011CrossRefGoogle Scholar
  15. (b).
    Park, C. P.; Maurya, R. A.; Lee, J. H.; Kim, D.-P. Lab Chip 2011, 11, 1941–1945CrossRefGoogle Scholar
  16. (c).
    Maurya, R. A.; Park, C. P.; Kim, D.-P. Beilstein J. Org. Chem. 2011, 7, 1158–1163CrossRefGoogle Scholar
  17. (d).
    Carofiglio, T.; Donnola, P.; Maggini, M.; Rossetto, M.; Rossi, E. Adv. Synth. Catal. 2008, 350, 2815–2822CrossRefGoogle Scholar
  18. (e).
    Meyer, S.; Tietze, D.; Rau, S.; Schäfer, B.; Kreisel, G. J. Photochem. Photobiol. A: Chem. 2007, 186, 248–253CrossRefGoogle Scholar
  19. (f).
    Jähnisch, K.; Dingerdissen, U. Chem. Eng. Technol. 2005, 28, 426–427CrossRefGoogle Scholar
  20. (g).
    Jähnisch, K.; Dingerdissen, U. Chem. Ing. Tech. 2004, 76, 630–632.CrossRefGoogle Scholar
  21. (h).
    Wootton, R. C. R.; Fortt, R.; de Mello, A. J. Org. Process Res. Dev. 2002, 6, 187–189.CrossRefGoogle Scholar
  22. 5.(a)
    Clennan, E. L.; Pace, A. Tetrahedron 2005, 61, 6665–6691CrossRefGoogle Scholar
  23. (b).
    DeRosa, M. C.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233-234, 351–371CrossRefGoogle Scholar
  24. (c).
    Iesce, M. R.; Cermola, F.; Temussi, F. Curr Org. Chem. 2005, 9, 109–139CrossRefGoogle Scholar
  25. (d).
    Clennan, E. L. Tetrahedron 2000, 56, 9151–9179CrossRefGoogle Scholar
  26. (e).
    Gollnick, K. Chim. Ind. 1982, 64, 156–166Google Scholar
  27. (f).
    Rojahn, W.; Warnecke, H.-U. Dragoco-Report 1980, 27, 159–164.Google Scholar
  28. 6.(a)
    Haggiage, E.; Coyle, E. E.; Joyce, K.; Oelgemöller, M. Green Chem. 2009, 11, 318–321CrossRefGoogle Scholar
  29. (b).
    Oelgemöller, M.; Healy, N.; de Oliveira, L.; Jung, C.; Mattay, J. Green Chem. 2006, 8, 831–834CrossRefGoogle Scholar
  30. (c).
    Oelgemöller, M.; Jung, C.; Mattay, J. Pure Appl. Chem. 2007, 79, 1939–1947CrossRefGoogle Scholar
  31. (d).
    Suchard, O.; Kane, R.; Roe, B. J.; Zimmerman, E.; Jung, C.; Waske, P. A.; Mattay, J.; Oelgemöller, M. Tetrahedron 2006, 62, 1467–1473CrossRefGoogle Scholar
  32. (e).
    Oelgemöller, M.; Jung, C.; Ortner, J.; Mattay, J.; Zimmermann, E. Green Chem. 2005, 7, 35–38CrossRefGoogle Scholar
  33. (f).
    Yavorskyy, A.; Shvydkiv, O.; Limburg, C.; Nolan, K.; Delaure, Y.; Oelgemöller, M. Green Chem. 2012, 14, DOI:10.1039/C2GC16439F.CrossRefGoogle Scholar
  34. 7.(a)
    Binder, R. G.; Benson, M. E.; Flath, R. A. Phytochemistry 1989, 28, 2799–2801CrossRefGoogle Scholar
  35. (b).
    Moir, M.; Thomson, R. H. Phythochemistry 1973, 12, 1351–1353CrossRefGoogle Scholar
  36. (c).
    Ikekawa, T.; Lin Wang, E.; Hamada, M.; Takeuchi, T.; Umezawa, H. Chem. Pharm. Buil. 1967, 15, 242–245CrossRefGoogle Scholar
  37. (d).
    Mylius, F. Ber. Dtsch. Chem. Ges., 1884, 17, 2411–2414.CrossRefGoogle Scholar
  38. 8.(a)
    For (S)-espicufolin, see Tietze, L. F.; Gericke, K. M.; Reddy Singidi, R.; Schuberth, I. Org. Biomol. Chem. 2007, 5, 1191–1200CrossRefGoogle Scholar
  39. (b).
    for (±)-ψ-indomycinone, see Hsu, D.-S.; Matsumoto, T.; Suzuki, K. Chem. Lett. 2006, 35, 1016–1017CrossRefGoogle Scholar
  40. (c).
    For mensacarcin, see Tietze, L. F.; Gunther, C.; Gericke, K. M.; Schuberth, I.; Bunkoczi, G. Eur. J. Org. Chem. 2005, 2459–2467Google Scholar
  41. (d).
    for (+)-rubiginone B2, see Motoyoshiya, J.; Masue, Y.; Iwayama, G.; Yoshioka, S.; Nishii, Y.; Aoyama, H. Synthesis 2004, 2099–2102Google Scholar
  42. (e).
    for aloesaponarin I, see Bingham, S. J.; Tyman, J. H. P. J. Chem. Soc., Perkin Trans. 1 1997, 3637–3642Google Scholar
  43. (f).
    for (+)-nocardione A, see Clive D. L. J.; Fletcher, S. P.; Liu, D. J. Org. Chem. 2004, 69, 3282–3293CrossRefGoogle Scholar
  44. (g).
    for rac-frenolicin B, see Contant, P.; Haess, M.; Riegl, J.; Scalone, M.; Visnick, M. Synthesis 1999, 821–828Google Scholar
  45. (h).
    for urdamycinone B, see Matsuo, G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K. J. Org. Chem. 1999, 64, 7101–7106CrossRefGoogle Scholar
  46. (i).
    for rac-juglomycin A, see Kraus, G. A.; Liu, P. Synth. Commun. 1996, 26, 4501–4506.CrossRefGoogle Scholar
  47. 9.(a)
    Takizawa, S.-y.; Aboshi, R.; Murata, S. Photochem. Photobiol. Sci. 2011, 10, 895–903CrossRefGoogle Scholar
  48. (b).
    Oelgemöller, M.; Mattay, J.; Görner, H. J. Phys. Chem. A 2011, 115, 280–285CrossRefGoogle Scholar
  49. (c).
    Murtinho, D.; Pinero, M.; Pereira, M. M.; Rocha Gonsalves, A. M. d’A.; Arnaut, L. G.; da Graça Miguel, M.; Burrows, H. D. J. Chem. Soc., Perkin Trans. 2 2000, 2441–2447Google Scholar
  50. (d).
    Croux, S.; Maurette, M.-T.; Hocquaux, M.; Ananides, A.; Braun, A. M.; Oliveros, E. New J. Chem. 1990, 14, 161–167Google Scholar
  51. (e).
    Wurm, G.; Geres, U. Arch. Pharm. (Weinheim) 1985, 318, 931–937CrossRefGoogle Scholar
  52. (f).
    Duchstein, H. J.; Wurm, G. Arch. Pharm. (Weinheim) 1984, 317, 809–812CrossRefGoogle Scholar
  53. (g).
    Griffiths, J.; Chu, K. Y.; Hawkins, C. J. Chem. Soc., Chem. Commun. 1976, 676–677.Google Scholar
  54. 10.(a)
    Steinfeldt, N.; Abdallah, R.; Dingerdissen, U.; Jahnisch, K. Org. Process Res. Dev. 2007, 11, 1025–1031CrossRefGoogle Scholar
  55. (b).
    Ehrich, H.; Linke, D.; Morgenschweis, K.; Baerns, M.; Jahnisch, K. Chimia 2002, 56, 647–653.CrossRefGoogle Scholar
  56. 11.(a)
    Carney, J. M.; Hammer, R. J.; Hulce, M.; Lomas, C. M.; Miyashiro, D. Tetrahedron Lett. 2011, 52, 352–355CrossRefGoogle Scholar
  57. (b).
    Kreisel, G.; Meyer, S.; Tietze, D.; Fidler, T.; Gorges, R.; Kirsch, A.; Schäfer, B.; Rau, S. Chem. Ing. Tech. 2007, 79, 153–159CrossRefGoogle Scholar
  58. (c).
    Landgraf, S. Spectrochim. Acta A 2001, 57, 2029–2048.CrossRefGoogle Scholar
  59. 12.
    van Dam, M. H. H.; Corriou, J.-P.; Midoux, N.; Lamine, A.; Roizard, S. C. Chem. Eng. Sci. 1999, 54, 5311–5318.CrossRefGoogle Scholar
  60. 13.(a)
    Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Green Chem. 2011, 13, 854–862CrossRefGoogle Scholar
  61. (b).
    Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry D. A.; Stefaniak, M. Green Chem. 2008, 10, 31–36CrossRefGoogle Scholar
  62. (c).
    Capello, C.; Fischer, U.; Hungerbüahler, K. Green Chem. 2007, 9, 927–934.CrossRefGoogle Scholar
  63. 14.
    For a discussion of energy needs in chemical reactions, see Stankiewicz, A. Chem. Eng. Res. Des. 2006, 84, 511–521.CrossRefGoogle Scholar
  64. 15.(a)
    Zakrzewski, A.; Neckers, D. C. Tetrahedron 1987, 43, 4507–4512CrossRefGoogle Scholar
  65. (b).
    Neckers, D. C. J. Photochem. Photobiol. A: Chem. 1989, 47, 1–29.CrossRefGoogle Scholar
  66. 16.(a)
    Fukuyama, T.; Kajihara, Y.; Hino, Y.; Ryu, I. J. Flow Chem. 2011, 40–45Google Scholar
  67. (b).
    Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Tetrahedron 2009, 65, 1593–1598.CrossRefGoogle Scholar
  68. 17.(a)
    Yoshida, J. I.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331–340CrossRefGoogle Scholar
  69. (b).
    Lerou, J. J.; Tonkovich, A. L.; Silva, L.; Perry, S.; McDaniel, J. Chem. Eng. Sci. 2010, 65, 380–385CrossRefGoogle Scholar
  70. (c).
    Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1, 467–478CrossRefGoogle Scholar
  71. (d).
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318.CrossRefGoogle Scholar
  72. 18.(a)
    Ciana, C. L.; Bochet, C. G. Chimia 2007, 61, 650–654CrossRefGoogle Scholar
  73. (b).
    Schiel, C.; Oelgemoaller, M.; Ortner, J.; Mattay J. Green Chem. 2001, 3, 224–228CrossRefGoogle Scholar
  74. (c).
    Schiel, C.; Oelgemöller, M.; Mattay, J. Synthesis 2001, 1275–1279Google Scholar
  75. (d).
    Albini, A.; Fagnoni, M.; Mella, M. Pure Appl. Chem. 2000, 72, 1321–1326.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Oksana Shvydkiv
    • 1
  • Carolin Limburg
    • 2
  • Kieran Nolan
    • 1
  • Michael Oelgemöller
    • 2
  1. 1.School of Chemical SciencesDublin City UniversityDublin 9Ireland
  2. 2.School of Pharmacy and Molecular SciencesJames Cook UniversityTownsvilleAustralia

Personalised recommendations