Advertisement

Journal of Flow Chemistry

, Volume 2, Issue 1, pp 24–27 | Cite as

The Effect of Self-Optimisation Targets on the Methylation of Alcohols Using Dimethyl Carbonate in Supercritical CO2

  • Denis N. Jumbam
  • Ryan A. Skilton
  • Andrew J. Parrott
  • Richard A. Bourne
  • Martyn Poliakoff
Full Paper

Abstract

This paper describes the next stage in our development of self-optimising reactors. We demonstrate that the same reaction can be optimised for a series of different criteria including yield, space-time yield, E factor and a weighted yield function (the product of space-time yield and yield). In different experiments, we achieved 97.6% yield, space-time yield of 42.9 kg/L/h and E factors of 1.4 and 3.3 (including CO2) and the weighted yield, which gave a promising balance between yield, E factor and space-time yield.

Keywords

supercritical fluids automation self-optimising reactors green chemistry flow chemistry 

References

  1. 1.
    Sheldon, R. A. Green Chem. 2007, 9, 1273–1283.CrossRefGoogle Scholar
  2. 2.
    Trost, B. M. Science 1991, 254, 1471–1477.CrossRefGoogle Scholar
  3. 3.
    Parrott, A. J.; Bourne, R. A.; Akien, G. R.; Irvine, D. J.; Poliakoff, M. Angew. Chem. Int. Ed. Engl. 2011, 50, 3788–3792.CrossRefGoogle Scholar
  4. 4.
    Bourne, R. A.; Skilton, R. A.; Parrott, A. J.; Irvine, D. J.; Poliakoff, M. Org. Process Res. Dev. 2011, 15, 932–938.CrossRefGoogle Scholar
  5. 5.
    Davies, I. W.; Welch, C. J. Science 2009, 325, 701–704.CrossRefGoogle Scholar
  6. 6.
    Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem.-Eur. J. 2008, 14, 7470–7477.CrossRefGoogle Scholar
  7. 7.
    Jas, G.; Kirschning, A. Chem.-Eur. J. 2003, 9, 5708–5723.CrossRefGoogle Scholar
  8. 8.
    Krishnadasan, S.; Brown, R. J. C.; Demello, A. J.; Demello, J. C. Lab Chip 2007, 7, 1434–1441.CrossRefGoogle Scholar
  9. 9.
    Huyer, W.; Neumaier, A. ACM Trans. Math. Softw. 2008, 35, 25.CrossRefGoogle Scholar
  10. 10.
    McMullen, J. P.; Jensen, K. F. Org. Process Res. Dev. 2010, 14, 1169–1176.CrossRefGoogle Scholar
  11. 11.
    McMullen, J. P.; Stone, M. T.; Buchwald, S. L.; Jensen, K. F. Angew. Chem. Int. Ed. Engl. 2010, 49, 7076–7080.CrossRefGoogle Scholar
  12. 12.
    Nelder, J. A.; Mead, R. Comput. J. 1965, 7, 308–313.CrossRefGoogle Scholar
  13. 13.
    Walsh, B.; Hyde, J. R.; Licence, P.; Poliakoff, M. Green Chem. 2005, 7, 456–463.CrossRefGoogle Scholar
  14. 14.
    Routh, M. W.; Swartz, P. A.; Denton, M. B. Anal. Chem. 1977, 49, 1422–1428.CrossRefGoogle Scholar
  15. 15.
    Morgan, E.; Burton, K. W.; Nickless, G. Chemom. Intell. Lab. Syst. 1990, 8, 97–107.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Denis N. Jumbam
    • 1
  • Ryan A. Skilton
    • 2
  • Andrew J. Parrott
    • 2
  • Richard A. Bourne
    • 2
  • Martyn Poliakoff
    • 2
  1. 1.Department of Chemistry and Chemical TechnologyWalter Sisulu UniversityMthathaSouth Africa
  2. 2.School of ChemistryUniversity of NottinghamUniversity ParkUK

Personalised recommendations