Journal of Flow Chemistry

, Volume 1, Issue 2, pp 90–96 | Cite as

Highlights from the Flow Chemistry Literature 2011 (Part 2)

  • Toma N. Glasnov
Research Highlights


In this section of the journal, the continuous flow chemistry literature of the preceding months is presented. Some key examples are highlighted in the form of graphical abstracts. The remaining publications in the field are then listed, grouped by journal name, with review articles grouped at the end.

Further Flow Chemistry Publications

  1. “Miniaturizing biocatalysis: Enzyme-catalyzed reactions in an aqueous/organic segmented flow capillary microreactor” R. Karande, A. Schmid, K. Buehler Advanced Synthesis & Catalysis 2011, 353, 2511–2521CrossRefGoogle Scholar
  2. “Synthesis of a drug-like focused library of trisubstituted pyrrolidines using integrated flow chemistry and batch methods” M. Baumann, I. R. Baxendale, C. Kuratli, S. V. Ley, R. E. Martin, J. Schneider ACS Combinatorial Science 2011, 13, 405–413CrossRefGoogle Scholar
  3. “Continuous-flow synthesis of 3,3-disubstituted oxindoles by a palladium-catalyzed a-arylation/alkylation sequence” P. Li, S. L. Buchwald Angewandte Chemie International Edition 2011, 50, 6396–6400CrossRefGoogle Scholar
  4. “Accelerating palladium-catalyzed C-F bond formation: Use of a microflow packed-bed reactor” T. Nöel, T. J. Maimone, S. L. Buchwald Angewandte Chemie International Edition 2011, 50, 8900–8903CrossRefGoogle Scholar
  5. “Asymmetric organocatalysis and analysis on a single microfluidic nanospray chip” S. Fritzsche, S. Ohla, P. Glaser, D. S. Giera, M. Sickert, C. Schneider, D. Belder Angewandte Chemie International Edition 2011, 50, 9467–9470CrossRefGoogle Scholar
  6. “Chlorination and dehydrochlorination reactions relevant to the manufacture of trichloroethene and tetrachloroethene–Part 1. Reaction pathways” I. W. Sutherland, N. G. Hamilton, C. C. Dudman, P. Jones, D. Lennon, J. M. Winfield Applied Catalysis A: General 2011, 399, 1–11CrossRefGoogle Scholar
  7. “A kinetic study of the liquid-phase hydrogenation of citral on Au/TiO2 and Pt–Sn/TiO2 thin films in capillary microreactors” L. N. Protasova, E. V. Rebrov, H. E. Skelton, A. E. H. Wheatley, J. C. Schouten Applied Catalysis A: General 2011, 399, 12–21CrossRefGoogle Scholar
  8. “Challenging the scope of continuous, gas-phase reactions with supported ionic liquid phase (SILP) catalysts–asymmetric hydroge¬nation of methyl acetoacetate” E. Öchsner, M. J. Schneider, C. Meyer, M. Haumann, P. Wasserscheid Applied Catalysis A: General 2011, 399, 35–41CrossRefGoogle Scholar
  9. “Multistep reactions using microreactor chemistry” B. Ahmed-Omer, D. A. Barrow, T. Wirth ARKIVOC 2011, (iv), 26–36Google Scholar
  10. “Unusual behavior in the reactivity of 5-substituted-1 H-tetrazoles in a resistively heated microreactor” B. Gutmann, T. N. Glasnov, T. Razzaq, W. Goessler, D. M. Roberge, C. O. Kappe Beilstein Journal of Organic Chemsitry 2011, 7, 503–517CrossRefGoogle Scholar
  11. “Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts” H. Oyamada, T. Naito, S. Kobayashi Beilstein Journal of Organic Chemsitry 2011, 7, 735–739CrossRefGoogle Scholar
  12. “Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination” J. R. Breen, G. Sandford, D. S. Yufit, J. A. K. Howard, J. Fray, B. Patel Beilstein Journal of Organic Chemsitry 2011, 7, 1048–1054CrossRefGoogle Scholar
  13. “Microphotochemistry: 4,4¢-dimethoxybenzophenone mediated photodecarboxylation reactions involving phthalimides” O. Shvydkiv, K. Nolan, M. Oelgemöller Beilstein Journal of Organic Chemsitry 2011, 7, 1055–1063CrossRefGoogle Scholar
  14. “Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling” A. Nagaki, Y. Uesugi, Y. Tomida, J.-i. Yoshida Beilstein Journal of Organic Chemsitry 2011, 7, 1064–1069CrossRefGoogle Scholar
  15. “Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones” F. R. Bou-Hamdan, F. Lévesque, A. G. O’Brien, P. H. Seeberger Beilstein Journal of Organic Chemsitry 2011, 7, 1124–1129CrossRefGoogle Scholar
  16. “Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis” M. C. Bryan, D. Wernick, C. D. Hein, J. V. Petersen, J. W. Eschelbach, E. M. Doherty Beilstein Journal of Organic Chemsitry 2011, 7, 1141–1149CrossRefGoogle Scholar
  17. “Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths” P. He, S. J. Haswell, P. D. I. Fletcher, S. M. Kelly, A. Mansfield Beilstein Journal of Organic Chemsitry 2011, 7, 1150–1157CrossRefGoogle Scholar
  18. “Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations” R. A. Maurya, C. P. Park, D.-P. Kim Beilstein Journal of Organic Chemsitry 2011, 7, 1158–1163CrossRefGoogle Scholar
  19. “The Eschenmoser coupling reaction under continuous-flow conditions” S. Singh, J. M. Köhler, A. Schober, G. A. Groß Beilstein Journal of Organic Chemsitry 2011, 7, 1164–1172CrossRefGoogle Scholar
  20. “Koch–Haaf reaction of adamantanols in an acid-tolerant hastelloy-made microreactor” T. Fukuyama, Y. Mukai, I. Ryu Beilstein Journal of Organic Chemsitry 2011, 7, 1288–1293CrossRefGoogle Scholar
  21. “Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor” C. E. T. Co, M. C. Tan, J. A. R. Diamante, L. R. C. Yan, R. R. Tan, L. F. Razon Catalysis Today 2011, 174, 54–58CrossRefGoogle Scholar
  22. “Heterogeneously catalyzed continuous-flow hydrogenation using segmented flow in capillary columns” J. J. W. Bakker, M. M. P. Zieverink, R. W. E. G. Reintjens, F. Kapteijn, J. A. Moulijn, M. T. Kreutzer ChemCatChem 2011, 3, 1155–1157CrossRefGoogle Scholar
  23. “The continuous-flow cycloaddition of azomethine ylides to carbon nanotubes” P. Salice, P. Maity, E. Rossi, T. Carofiglio, E. Menna, M. Maggini Chemical Communications 2011, 47, 9092–9094CrossRefGoogle Scholar
  24. “Photocatalytic reaction using novel inorganic polymer derived packed bed microreactor with modified TiO2 microbeads” T.-H. Yoon, L.-Y. Hong, D.-P. Kim, Chemical Engineering Journal 2011, 167, 666–670CrossRefGoogle Scholar
  25. “Scale-up concept of single-channel microreactors from process development to industrial production” N. Kockmann, M. Gottsponer, D. M. Roberge Chemical Engineering Journal 2011, 167, 718–726CrossRefGoogle Scholar
  26. “Sicherheitstechnische Untersuchungen zum Betrieb von Mikroreaktoren im Explosionsbereich” H. Hieronymus, J. Fischer, S. Heinrich, C. Liebner, T. Lange, E. Klemm Chemie Ingenieur Technik 2011, 83, 1–7CrossRefGoogle Scholar
  27. “Redispersions-Mikroreaktorsystem für eine phasentransferkatalysierte Veresterung” J. Jovanovic, W. Hengeveld, E. V. Rebrov, T. A. Nijhuis, V. Hessel, J. C. Schouten Chemie Ingenieur Technik 2011, 83, 1096–1106CrossRefGoogle Scholar
  28. “Reverse-flow adsorption for process-integrated recycling of homogeneous transition-metal catalysts” F. Marras, P. W. N. M. van Leeuwen, J. N. H. Reek Chemistry–A European Journal 2011, 17, 7460–771CrossRefGoogle Scholar
  29. “Rapid access to a-alkoxy and a-amino acid derivatives through safe continuous-flow generation of diazoesters” H. E. Bartrum, D. C. Blakemore, C. J. Moody, C. J. Hayes Chemistry–A European Journal 2011, 17, 9586–9589CrossRefGoogle Scholar
  30. “Azide synthesis in microstructured flow systems” M. Weber, G. Yilmaz, G. Wille Chemistry Today 2011, 29, 8–10Google Scholar
  31. “Continuous-flow production of alkyl nitrites” J.-C. M. Monbaliu, J. Jorda, B. Chevalier, C. V. Stevens, B. Morvan Chemistry Today 2011, 29, 50–52Google Scholar
  32. “Fast optimisation of a Diels-Alder reaction in a flow microreactor by in-line HPLC analysis” M. Rasheed, T. Wirth Chemistry Today 2011, 29, 54–56Google Scholar
  33. “Rapid and efficient radiosyntheses of meta-substituted [18F]fluoroarenes from [18F]fluoride ion and diaryliodonium tosylates within a microreactor” J.-H. Chun, S. Lu, V. W. Pike European Journal of Organic Chemistry 2011, 4439–4447Google Scholar
  34. “Continuous flow synthesis of methanofullerenes in microstructured reactors: A kinetic study” S. Silvestrini, D. D. Nogare, T. Carofiglio, E. Menna, P. Canu, M. Maggini European Journal of Organic Chemistry 2011, 5571–5576Google Scholar
  35. “Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate” M. Escriba, V. Hessel, S. Rothstock, J. Eras, R. Canela, P. Löb Green Chemistry 2011, 13, 1799–1805CrossRefGoogle Scholar
  36. “Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalyst” E. Perez, J. Fraga-Dubreuil, E. Garcia-Verdugo, P. A. Hamley, W. B. Thomas, D. Housley, W. Partenheimer, M. Poliakoff Green Chemistry 2011, 13, 2389–2396CrossRefGoogle Scholar
  37. “Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts” E. Perez, J. Fraga-Dubreuil, E. Garcia-Verdugo, P. A. Hamley, M. L. Thomas, C. Yan, W. B. Thomas, D. Housley, W. Partenheimer, M. Poliakoff Green Chemistry 2011, 13, 2397–2407CrossRefGoogle Scholar
  38. “Microwave-Assisted Process Intensification of Synthesis of Thymol Using Carbonized Sulfonic Acidic Resin (CSA) Catalyst” A. A. Ali, V. G. Gaikar Industrial & Engineering Chemistry Research 2011, 50, 6543–6555CrossRefGoogle Scholar
  39. “Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium/rhenium catalysts” M. Chia, Y. J. Pagan-Torres, D. Hibbitts, Q. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic Journal of the American Chemical Society 2011, 133, 12675–12689CrossRefGoogle Scholar
  40. “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system” P. H. Hoang, H. Park, D.-P. Kim Journal of the American Chemical Society 2011, 133, 14765–14770CrossRefGoogle Scholar
  41. “Immobilised enzyme microreactor for screening of multi-step bioconversions: Characterisation of a de novo transketolase-w- transaminase pathway to synthesise chiral amino alcohols” S. Matosevic, G. J. Lye, F. Baganz Journal of Biotechnology 2011, 155, 320–329CrossRefGoogle Scholar
  42. “Microflow systems for chemical synthesis and analysis: Approaches to full integration of chemical process” K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, T. Kitamori Journal of Flow Chemistry 2011, 1, 3–12CrossRefGoogle Scholar
  43. “From a review of noble metal versus enzyme catalysts for glucose oxidation under conventional conditions towards a process design analysis for continuous-flow operation” I. Dencic, J. Meuldijk, M. de Croon, V. Hessel Journal of Flow Chemistry 2011, 1, 13–23CrossRefGoogle Scholar
  44. “Scalable and robust synthesis of CpRu(MeCN)3PF6 via continuous flow photochemistry” A. C. Gutierrez, T. F. Jamison Journal of Flow Chemistry 2011, 1, 24–27CrossRefGoogle Scholar
  45. “An automated process for a sequential heterocycle/multicomponent reaction: Multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones” N. Pagano, A. Herath, N. D. P. Cosford Journal of Flow Chemistry 2011, 1, 28–31CrossRefGoogle Scholar
  46. “Accessing stereochemically rich sultams via microwave-assisted, continuous-flow organic synthesis (MACOS) scale-out” M. G. Organ, P. R. Hanson, A. Rolfe, T. B. Samarakoon, F. Ullah Journal of Flow Chemistry 2011, 1, 32–39CrossRefGoogle Scholar
  47. “Continuous microflow [2+2] photocycloaddition reactions using energy-saving compact light sources” T. Fukuyama, Y. Kajihara, Y. Hino, I. Ryu Journal of Flow Chemistry 2011, 1, 40–45CrossRefGoogle Scholar
  48. “Diacylglycerol synthesis by lipase-catalyzed partial hydrolysis of palm oil under microwave irradiation and continuous flow conditions” L. M. C. Matos, I. C. R. Leal, R. O. M. A. de Souza, Journal of Molecular Catalysis B: Enzymatic 2011, 72, 36–39CrossRefGoogle Scholar
  49. “Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides” D. Obermayer, T. N. Glasnov, C. O. Kappe Journal of Organic Chemistry 2011, 76, 6657–6669CrossRefGoogle Scholar
  50. “A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions” S. Kuhn, T. Nöel, L. Gu, P. L. Heider, K. F. Jensen Lab on a Chip 2011, 11, 2488–2492CrossRefGoogle Scholar
  51. “Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach” S. B. Ötvös, I. M. Mandity, F. Fülöp Molecular Diversity 2011, 15, 605–611CrossRefGoogle Scholar
  52. “Stepwise aromatic nucleophilic substitution in continuous flow. Synthesis of an unsymmetrically substituted 3,5-diamino-benzonitrile library” L. Lengyel, V. Gyóllai, T. Nagy, G. Dorman, P. Terleczky, V. Hada, K. Nogradi, F. Sebök, L. Ürge, F. Darvas Molecular Diversity 2011, 15, 631–638CrossRefGoogle Scholar
  53. “Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production” M. Schön, M. Schnürch, M. D. Mihovilovic Molecular Diversity 2011, 15, 639–643CrossRefGoogle Scholar
  54. “Continuous-flow reactor-based synthesis of carbohydrate and dihydrolipoic acid-capped quantum dots” P. Laurino, R. Kikkeri, P. H. Seeberger Nature Protocols 2011, 6, 1209–1220CrossRefGoogle Scholar
  55. “Continuous-flow, palladium-catalysed alkoxycarbonylation reactions using a prototype reactor in which it is possible to load gas and heat simultaneously” M. A. Mercadante, N. E. Leadbeater Organic & Biomolecular Chemistry 2011, 9, 6575–6578CrossRefGoogle Scholar
  56. “Teflon AF-2400 mediated gas–liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration” P. Koos, U. Gross, A. Polyzos, M. O’Brien, I. Baxendale, S. V. Ley Organic & Biomolecular Chemistry 2011, 9, 6903–6908CrossRefGoogle Scholar
  57. “A new enabling technology for convenient laboratory scale continuous flow processing at low temperatures” D. L. Browne, M. Baumann, B. H. B. H. Harji, I. R. Baxendale, S. V. Ley Organic Letters 2011, 13, 3312–3315CrossRefGoogle Scholar
  58. “Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology” A. R. Bogdan, K. James Organic Letters 2011, 13, 4060–4063CrossRefGoogle Scholar
  59. “Suzuki-Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow” T. Nöel, A. J. Musacchio Organic Letters 2011, 13, 5180–5183CrossRefGoogle Scholar
  60. “A general, one-step synthesis of substituted indazoles using a flow reactor” R. C. Wheeler, E. Baxter, I. B. Campbell, S. J. F. Macdonald Organic Process Research & Development 2011, 15, 565–569CrossRefGoogle Scholar
  61. “Phase transfer catalyzed Wittig reaction in the microtube reactor under liquid–liquid slug-flow pattern” E. Sinkovec, M. Krajnc Organic Process Research & Development 2011, 15, 817–823CrossRefGoogle Scholar
  62. “Ozonolysis in Flow Using Capillary Reactors” M. D. Roydhouse, A. Ghaini, A. Constantinou, A. Cantu-Perez, W. B. Motherwell, A. Gavriilidis Organic Process Research & Development 2011, 15, 989–996CrossRefGoogle Scholar
  63. “Microphotochemistry: a reactor comparison study using the photosensitized addition of isopropanol to furanones as a model reaction” O. Shvydkiv, A. Yavorskyy, S. B. Tan, K. Nolan, N. Hoffmann, A. Youssef, M. Oelgemöller Photochemical & Photobiological Sciences 2011, 10, 1399–1404CrossRefGoogle Scholar
  64. “First synthesis of methyl 2-amino-6-methoxynicotinate using a combination of microwave and flow reaction technologies” G. Jeges, T. Meszaros, T. Szommer, J. Kovacs, T. Nagy, D. Tymoshenko, N. Fotouhi, P. Gillespie, A. Kowalczyk, R. A. Goodnow Jr. Synlett 2011, 203–206Google Scholar
  65. “An integrated flow and batch-based approach for the synthesis of O-methyl siphonazole” M. Baumann, I. R. Baxendale, M. Brasholz, J. J. Hayward, S. V. Ley, N. Nikbin Synlett 2011, 1375–1380Google Scholar
  66. “Petasis olefination in a continuous-flow microwave reactor: exo-Glycals from sugar lactones” S. Koch, H. Löwe, H. Kunz Synlett 2011, 1978–1982Google Scholar
  67. “Stereoselective glycosylation of 3-deoxy-D-manno-2-octulosonic acid with batch and microfluidic methods” A. Shimoyama, Y. Fujimoto, K. Fukase Synlett 2011, 2359–2362Google Scholar
  68. “Application of a double aza-Michael reaction in a ‘Click, Click, Cy-Click’ strategy: From bench to flow” Q. Zang, S. Javed, F. Ullah, A. Zhou, C. A. Knudtson, D. Bi, F. Z. Basha, M. G. Organ, P. R. Hanson Synthesis 2011, 2743–2750Google Scholar
  69. “Heterogeneous continuous flow synthetic system using cyclohexane-based multiphase electrolyte solutions” Y. Okada, T. Yoshioka, M. Koike, K. Chiba Tetrahedron Letters 2011, 52, 4690–4693CrossRefGoogle Scholar
  70. “Efficient synthesis of unsymmetric diarylalkynes from decarboxylative coupling in a continuous flow reaction system” H. J. Lee, K. Park, G. Bae, J. Choe, K. H. Song, S. Lee Tetrahedron Letters 2011, 52, 5064–5067CrossRefGoogle Scholar
  71. “Ultrasound-promoted intramolecular direct arylation in a capillary flow microreactor” L. Zhang, M. Geng, P. Teng, D. Zhao, X. Lu, J.-X. Li Ultrasonics Sonochemistry 2011, 19, 250–256CrossRefGoogle Scholar


  1. “Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis” R. L. Hartman, J. P. McMullen, K. F. Jensen Angewandte Chemie International Edition 2011, 50, 7502–7519CrossRefGoogle Scholar
  2. “Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids” M. I. Burguete, E. García-Verdugo, S. V. Luis Beilstein Journal of Organic Chemistry 2011, 7, 1347–1359CrossRefGoogle Scholar
  3. “Biotransformations in microstructured reactors: more than flowing with the stream?” J. M. Bolivar, J. Wiesbauer, B. Nidetzky Trends in Biotechnology 2011, 29, 333–342CrossRefGoogle Scholar
  4. “Cross-coupling in flow” T. Nöel, S. L. Buchwald Chemical Society Reviews 2011, 40, 5010–5029CrossRefGoogle Scholar
  5. “Recent advances in micro reaction technology” C. Wiles, P. Watts Chemical Communications 2011, 47, 6512–6535CrossRefGoogle Scholar
  6. “Micromixer-assisted polymerization processes” F. Bally, C. A. Serra, V. Hessel, G. Hadziioannou Chemical Engineering Science 2011, 66, 1449–1462CrossRefGoogle Scholar
  7. “The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes” T. N. Glasnov, C. O. Kappe Chemistry–A European Journal 2011, 17, 11956–11968CrossRefGoogle Scholar
  8. “Microfluidics: An essential tool for product development in the life sciences” H. Becker, C. Gärtner Chemistry Today 2011, 29, 11–14Google Scholar
  9. “Catalytic processes in small scale flow reactors: Status and opportunities” K. D. Nagy, L. F. Jensen Chemistry Today 2011, 29, 18–21Google Scholar
  10. “Flow chemistry today: practical approaches for optimization and scale-up” R. Becker, K. Koch, P. J. Nieuwland, F. P. J. T. Rutjes Chemistry Today 2011, 29, 47–49Google Scholar
  11. “Safe use of azides in continuous flow” A. G. O’Brien, F. Levesque, Y. Suzuki, P. H. Seeberger Chemistry Today 2011, 29, 57–60Google Scholar
  12. “Novel process windows–Part 1: Boosted micro process technology” V. Hessel, Q. Wang Chemistry Today 2011, 29, 81–84Google Scholar
  13. “The flow synthesis of heterocycles for natural product and medicinal chemistry applications” M. Baumann, I. R. Baxendale, S. V. Ley Molecular Diversity 2011, 15, 613–630CrossRefGoogle Scholar
  14. “Recent advances in microflow photochemistry” M. Oelgemöller, O. Shvydkiv Molecules 2011, 16, 7522–7550CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  1. 1.Institute of ChemistryKarl-Franzens-University GrazGrazAustria

Personalised recommendations