Advertisement

Journal of Flow Chemistry

, Volume 2, Issue 1, pp 1–4 | Cite as

Multiphase Flow Systems for Selective Aerobic Oxidation of Alcohols Catalyzed by Bimetallic Nanoclusters

  • Kosuke Kaizuka
  • Ka-Young Lee
  • Hiroyuki Miyamura
  • Shū Kobayashi
Communication
  • 12 Downloads

Abstract

Au-Pt and Au-Pd bimetallic nanoclusters that catalyzed the aerobic oxidation of alcohols during a once-through pass through gas-liquid-liquid-solid flow systems were developed. Alcohols were converted to aldehydes and ketones in benzotrifluoride (BTF)/water media by Au-Pt catalyst or to the corresponding methyl esters in methanol/water media by Au-Pd catalyst. The flow systems were superior to the batch systems in terms of both yield and selectivity.

Keywords

bimetallic cluster oxidation flow system heterogeneous catalysis alcohol 

Supplementary material

41981_2012_2010001_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1689 KB.

References and Notes

  1. 1.
    Reviews: (a) Anderson, N. G. Org. Process Res. Dev. 2001, 5, 613–621CrossRefGoogle Scholar
  2. (b).
    Ley, S. V.; Baxendale, I. R. Nat. Rev. Drug Discovery 2002, 1, 573–586CrossRefGoogle Scholar
  3. (c).
    Jas, G.; Kirschning, A. Chem. Eur. J. 2003, 9, 5708–5723CrossRefGoogle Scholar
  4. (d).
    Kirschning, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972–5990CrossRefGoogle Scholar
  5. (e).
    Kobayashi, J.; Mori, Y.; Kobayashi, S. Chem. Asian J. 2006, 1, 22–35CrossRefGoogle Scholar
  6. (f).
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318CrossRefGoogle Scholar
  7. (g).
    Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem. 2007, 5, 733–740CrossRefGoogle Scholar
  8. (h).
    Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467Google Scholar
  9. (i).
    Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008, 151–163Google Scholar
  10. (j).
    Yoshida, J.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450–7459CrossRefGoogle Scholar
  11. (k).
    Yoshida, J. Flash Chemistry. Fast Organic Synthesis in Microsystems; Wiley-Blackwell: New York, 2008Google Scholar
  12. (l).
    Lin, W.-Y.; Wang, Y.; Wang, S.; Tseng, H.-R. Nano Today 2009, 4, 470–481CrossRefGoogle Scholar
  13. (m).
    Hessel, V.; Renken, A.; Schouten, J. C.; Yoshida, J., Eds.; Micro Process Engeering; Wiley-VHC: New York, 2009Google Scholar
  14. (n).
    McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal. Chem. 2010, 3, 19–42CrossRefGoogle Scholar
  15. (o).
    Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675–680CrossRefGoogle Scholar
  16. (p).
    Yoshida, J. Chem. Rec. 2010, 10, 332–341.CrossRefGoogle Scholar
  17. 2.
    Suga, S.; Yamada, D.; Yoshida, J. Chem. Lett. 2010, 39, 404–406.CrossRefGoogle Scholar
  18. 3. (a)
    Cao, E.; Motherwell, W. B.; Gavriilidis, A. Chem. Eng. Sci. 2004, 59, 4803–4808CrossRefGoogle Scholar
  19. (b).
    Cao, E.; Motherwell, W. B.; Gavriilidis, A. Chem. Eng. Technol. 2006, 29, 1372–1375.CrossRefGoogle Scholar
  20. 4.
    Wang, N.; Matsumoto, T.; Ueno, M.; Miyamura, H.; Kobayashi, S. Angew. Chem. Int. Ed. 2009, 48, 4744–4746.CrossRefGoogle Scholar
  21. 5.
    Bavykin, D. V.; Lapkin, A. A.; Kolaczwski, S. T.; Plucinski, P. K. Appl. Catal. A 2005, 288, 175–184.CrossRefGoogle Scholar
  22. 6.
    Zotova, N.; Hellgardt, K.; Kelsall, G. H.; Jessiman, A. S.; Hii, K. K. Green Chem. 2010, 12, 2157–2163.CrossRefGoogle Scholar
  23. 7.
    Reviews: (a) Matsumoto, T.; Ueno, M.; Wang, N.; Kobayashi, S. Chem. Asian J. 2008, 3, 196–214CrossRefGoogle Scholar
  24. (b).
    Malat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037–3058.CrossRefGoogle Scholar
  25. 8. (a)
    Sheldon, R.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981Google Scholar
  26. (b).
    Madin, A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 7, p 251Google Scholar
  27. (c).
    Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; John Wiley & Sons: New York, 1992.Google Scholar
  28. 9.
    Jones oxidation: (a) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weeden, B. C. L. J. Chem. Soc. 1946, 39–45Google Scholar
  29. (b).
    Bowers, A.; Harshall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc. 1953, 2548–2560Google Scholar
  30. (c).
    Collins oxidation: (c) Collins, J. C.; Hess, W. W.; Frank, F. J. Tetrahedron Lett. 1968, 9, 3363–3366CrossRefGoogle Scholar
  31. (d).
    PCC oxidation: (d) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647–2650CrossRefGoogle Scholar
  32. (e).
    PCC oxidation: (e) Piancatelli, G.; Scettri, A.; D’Auria, M. Synthesis 1982, 245–258Google Scholar
  33. (f).
    PDC oxidation: (f) Coates, W. M.; Corrigan, J. R. Chem. Ind. (London) 1969, 1594.Google Scholar
  34. 10. (a)
    Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405–408CrossRefGoogle Scholar
  35. (b).
    Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  36. 11.
    Reviews: (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45, 7896–7936CrossRefGoogle Scholar
  37. (b).
    Arcadi, A. Chem. Rev. 2008, 108, 3266–3325CrossRefGoogle Scholar
  38. (c).
    Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265CrossRefGoogle Scholar
  39. (d).
    Pina, C. D.; Falletta, E.; Prati, L.; Rossi, M. Chem. Soc. Rev. 2008, 37, 2077–2095CrossRefGoogle Scholar
  40. (e).
    Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096–2126CrossRefGoogle Scholar
  41. (f).
    Hutchings, G. J. Chem. Commun. 2008, 1148–1164Google Scholar
  42. (g).
    Shiju, N. R.; Guliants, V. V. Appl. Catal. A 2009, 356, 1–17.CrossRefGoogle Scholar
  43. 12.
    Aerobic oxidation catalyzed by gold-based bimetallic nanoclusters has also been investigated: (a) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362–365CrossRefGoogle Scholar
  44. (b).
    Chaki, N. K.; Tsunoyama, H.; Negishi, Y.; Sakurai, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 4885–4888CrossRefGoogle Scholar
  45. (c).
    Miyamura, H.; Matsubara, R.; Kobayashi, S. Chem. Commun. 2008, 2031–2033.Google Scholar
  46. 13.
    Review: Kobayashi, S.; Miyamura, H. Chem. Rec. 2010, 10, 271–290.CrossRefGoogle Scholar
  47. 14.
    Aerobic oxidation of alcohols: (a) Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Angew. Chem. Int. Ed. 2007, 46, 4151–4154CrossRefGoogle Scholar
  48. (b).
    Miyamura, H.; Matsubara, R.; Kobayashi, S. Chem. Commun. 2008, 2031–2033Google Scholar
  49. (c).
    Lucchesi, C.; Inasaki, T.; Miyamura, H.; Matsubara, R.; Kobayashi, S. Adv. Synth. Catal. 2008, 350, 1996–2000CrossRefGoogle Scholar
  50. (d).
    direct oxidative ester formation: (d) Miyamura, H.; Yasukawa, T.; Kobayashi, S. Green Chem. 2010, 12, 776–778CrossRefGoogle Scholar
  51. (e).
    Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Asian J. 2011, 6, 621–627CrossRefGoogle Scholar
  52. (f).
    tandem oxidation and Michael addition: (f) Yoo, W.-J.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2011, 133, 3095–3103CrossRefGoogle Scholar
  53. (g).
    aerobic oxidation of amines: (g) Miyamura, H.; Morita, M.; Inasaki, T.; Kobayashi, S. Bull. Chem. Soc. Jpn. 2011, 84, 588–599.CrossRefGoogle Scholar
  54. 15. (a)
    Kaizuka, K.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 15096–15098CrossRefGoogle Scholar
  55. (b).
    Kaizuka, K.; Miyamura, H.; Kobayashi, S. KOBUNSHI RONBUNSHU 2011, 68, 493–508.CrossRefGoogle Scholar
  56. 16.
    Details of ratio of catalysts and Celite are shown in Supporting Information.Google Scholar
  57. 17.
    Details of determination of the residence time are shown in Supporting Information.Google Scholar
  58. 18.
    Details of reaction profiles are shown in Supporting Information.Google Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  • Kosuke Kaizuka
    • 1
  • Ka-Young Lee
    • 1
  • Hiroyuki Miyamura
    • 1
  • Shū Kobayashi
    • 1
  1. 1.Department of Chemistry, School of ScienceThe University of TokyoHongo, Bunkyo-ku, TokyoJapan

Personalised recommendations