Journal of Flow Chemistry

, Volume 1, Issue 2, pp 68–73 | Cite as

Reissert Indole Synthesis Using Continuous-Flow Hydrogenation

  • Eloïc Colombo
  • Philippe Ratel
  • Laurent Mounier
  • Fabrice Guillier
Full Paper


A series of substituted indole-2-carboxylic acid ethyl esters and aza-indole analogs have been prepared using continuous-flow hydrogenation. The identification of some key parameters using a design of experiments (DoE)-based approach allowed efficient optimization of each synthesis. The scale-up study for the multigram preparation of one model indole substrate showed the importance of working at steady state with the H-Cube apparatus. A new useful method for the easy preparation of substituted indoles in various quantities is presented.


heterogeneous catalysis reduction Reissert indole synthesis heterocycle design of experiments 

Supplementary material

41981_2011_1020068_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1932 KB.

5. References

  1. 1.(a)
    For selected reviews related to flow chemistry, continuous flow technology and microreactors, see: (a) Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406–446.CrossRefGoogle Scholar
  2. 1.(b)
    Wiles, C.; Watts, P. Eur. J. Org. Chem. 2008, 1655–1671.Google Scholar
  3. 1.(c)
    Geyer, K.; Codée, J. D. C.; Seeberger, P. H. Chem. Eur. J. 2006, 12, 8434–8442.CrossRefGoogle Scholar
  4. 1.(d)
    Pennemann, H.; Watts, P.; Haswell, S. J.; Hessel, V.; Löwe, H. Org. Proc. Res. Dev. 2004, 8, 422–439.CrossRefGoogle Scholar
  5. 1.(e)
    Masson, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318.CrossRefGoogle Scholar
  6. 1.(f)
    Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem. Int. Ed. 2007, 46, 5704–5708.CrossRefGoogle Scholar
  7. 1.(g)
    Wenger, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583–4592.CrossRefGoogle Scholar
  8. 2.(a)
    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318–323.CrossRefGoogle Scholar
  9. 2.(b)
    Zhang, X.; Stefanick, S.; Villani, F. J. Org. Proc. Res. Dev. 2004, 8, 455–460.CrossRefGoogle Scholar
  10. 2.(c)
    Braune, S.; Pöchlauer, P.; Reintjens, R.; Steinhofer, S.; Winter, M.; Lobet, O.; Guidat, R.; Woehl, P.; Guermeur, C. Chim. Oggi 2009, 27, 26–29.Google Scholar
  11. 3.
    Darvas, F.; Dormán, G.; Lengyel, L.; Kovács, I.; Jones, R.; Urge, L. Chim. Oggi, 2009, 27, 40–43.Google Scholar
  12. 4.(a)
    Jones, R. V.; Gödörházy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F. J. Comb. Chem. 2006, 8, 110–116.CrossRefGoogle Scholar
  13. 4.(b)
    The H-Cube product series is available from ThalesNano Nanotechnology Inc., Budapest, Hungary, http:www. Scholar
  14. 5.(a)
    Clapham, B.; Wilson, N. S.; Michmerhuizen, M. J.; Blanchard, D. P.; Dingle, D. M.; Nemcek, T. A.; Pan, J. Y.; Sauer, D. R. J. Comb. Chem. 2008, 10, 88–93.CrossRefGoogle Scholar
  15. 5(b).
    Franckevicˇius, V.; Knudsen, K. R.; Ladlow, M.; Longbottom, D. A.; Ley, S. V. Synlett 2006, 889–892.Google Scholar
  16. 5(c).
    Petersen, T. P.; Ritzén, A.; Ulven, T. Org. Lett. 2009, 11, 5134–5137.CrossRefGoogle Scholar
  17. 5(d).
    Hermán, B.; Szo²llo²si, G.; Fülöp, F.; Bartók, M. Appl. Catal. A 2007, 331, 39–43.CrossRefGoogle Scholar
  18. 6.(a)
    Irfan, M.; Petricci, E.; Glasnov, T. N.; Taddei, M.; Kappe, C. O. Eur. J. Org. Chem. 2009, 1327–1334.Google Scholar
  19. 6(b).
    Tarleton, M.; McCluskey, A. Tetrahedron Lett. 2011, 52, 1583–1586.CrossRefGoogle Scholar
  20. 7.(a)
    Sundberg, R. J. In Indoles; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: London, 1996.Google Scholar
  21. 7.(b)
    Gribble, G. W. J. Chem. Soc. Perkin Trans. 1 2000, 1045–1075.CrossRefGoogle Scholar
  22. 7.(c)
    Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442–453.CrossRefGoogle Scholar
  23. 8.(a)
    Batcho, A. D.; Leimgruber, W. US3732245, 1973.Google Scholar
  24. 8(b).
    Clark, R. D.; Repke, D. B. Heterocycles 1984, 22, 195–221.CrossRefGoogle Scholar
  25. 9.(a)
    Reissert, A. Ber. Dtsch. Chem. Ges. 1897, 30, 1030–1053.CrossRefGoogle Scholar
  26. 9(b).
    Noland, W. E.; Baude, F. J. Org. Synth. Coll. 1973, 5, 567–571.Google Scholar
  27. 10.(a)
    Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241–2245.CrossRefGoogle Scholar
  28. 10.(b)
    Robinson, B. Chem. Rev. 1969, 69, 227–250.CrossRefGoogle Scholar
  29. 11.
    Wahab, B.; Ellames, G.; Watts, P. Tetrahedron 2010, 66, 3861–3865.CrossRefGoogle Scholar
  30. 12.
    Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Eur. J. Org. Chem. 2009, 1321–1325.Google Scholar
  31. 13.
    O’Brien, A. G.; Lévesque, F.; Seeberger, P. H. Chem. Commun. 2011, 2688–2690.Google Scholar
  32. 14.
    Nicolaou, K. C.; Lee, S. H.; Estrada, A. A.; Zak, M. Angew. Chem. Int. Ed. 2005, 44, 3736–3740.CrossRefGoogle Scholar
  33. 15.
    Sall, D. J.; Arfsten, A. E.; Bastian, J. A.; Denney, M. L.; Harms, C. S.; McCowan, J. R.; Morin, Jr., J. M.; Rose, J. W.; Scarborough, R. M.; Smyth, M. S.; Um, S. L.; Utterback, B. G.; Vasileff, R. T.; Wikel, J. H.; Wyss, V. L.; Jakubowski, J. A. J. Med. Chem. 1997, 40, 2843–2857.CrossRefGoogle Scholar
  34. 16.
    Thomas, G. H.; Sambrook Smith, C. P.; Rowley, R. J.; Procter, M. J.; Murray, P. J.; Krulle, T. M.; Bradley, S. E.; Schofield, K. S.; Thomas, M. K.; Stuart, E. B. WO04104001, 2004.Google Scholar
  35. 17.
    Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shinba, M.; Sato, Y.; Yamada, H.; Murakami, Y. Synlett 2000, 8, 1196–1198.Google Scholar
  36. 18.
    Hazard, R.; Tallec, A. Bull. Soc. Chim. Fr. 1973, 11, 3040–3044.Google Scholar
  37. 19.
    Chapman, N.; Conway, B.; O’Grady, F.; Wall, M. D. Synlett 2006, 7, 1043–1046.Google Scholar
  38. 20.
    Curran, D. P. Angew. Chem. Int. Ed. 1998, 37, 1174–1196.CrossRefGoogle Scholar
  39. 21.
    Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 2566–2568.Google Scholar
  40. 22.
    Frydman, B.; Buldain, G.; Repetto, J. C. J. Org. Chem. 1973, 38, 1824–1831.CrossRefGoogle Scholar
  41. 23.
    Glasnov, T. N.; Kappe, C. O. Adv. Synth. Catal. 2010, 352, 3089–3097.CrossRefGoogle Scholar
  42. 24.
    Saaby, S.; Rahbek Knudsen, K.; Ladlow, M.; Ley, S. V. Chem. Commun. 2005, 2909–2911.Google Scholar
  43. 25.
    Tye, H. Drug Discov. Today 2004, 9, 485–491.CrossRefGoogle Scholar
  44. 26.
    The Design-Expert® software, version 7.0 (DX7) is available from Stat-Ease, Inc., Minneapolis, MN,
  45. 27.
    Brunner, E. J. Chem. Eng. Data 1985, 30, 269–273.CrossRefGoogle Scholar
  46. 28.
    The H-Cube Midi™ product series is designed to perform flow hydrogenation with an output of 10 g/h. H-Cube Midi™ product series is available from ThalesNano Nanotechnology Inc., Budapest, Hungary,
  47. 29.(a)
    Murakami, Y.; Watanabe, T.; Kobayashi, A.; Yokoyama, Y. Synthesis 1984, 738–740.Google Scholar
  48. 29.(b)
    Lachance, N.; April, M.; Joly, M.-A. Synthesis 2005, 2571–2577.Google Scholar
  49. 29.(c)
    Jakubowski, J. A.; Kinnick, M. D.; McCowan, J. R.; Morin, Jr., J. M.; Sall, D. J.; Vaslleff, T. R. EP0655439, 1994.Google Scholar
  50. 29.(d)
    Sanz, R.; Escribano, J.; Pedrosa, M. R.; Aguado, R.; Arnáiz, F. J. Adv. Synth. Catal. 2007, 349, 713–718.CrossRefGoogle Scholar
  51. 29.(e)
    Al-Said, N. H.; Shawakfeh, K. Q.; Abdullah, W. N. Molecules 2005, 10, 1446–1457.CrossRefGoogle Scholar
  52. 29.(f)
    Hersperger, R.; Janser, P.; Pfenninger, E.; Wuethrich, H. J.; Miltz, W. WO2005077932, 2005.Google Scholar
  53. 29.(g)
    Albrecht, R.; Heindl, J.; Loge, O. Eur. J. Med. Chem. Chim. Ther. 1985, 20, 57–60.Google Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  • Eloïc Colombo
    • 1
  • Philippe Ratel
    • 1
  • Laurent Mounier
    • 1
  • Fabrice Guillier
    • 1
  1. Abbott company, Chemical, Design and Synthesis UnitLaboratoires Fournier S.A.DaixFrance

Personalised recommendations