Advertisement

Journal of Flow Chemistry

, Volume 1, Issue 2, pp 53–55 | Cite as

Development of a Photochemical Microfluidics Platform

  • Ketan Pimparkar
  • Bernard Yen
  • John R. Goodell
  • Veronique I. Martin
  • Wen-Hsuan Lee
  • John A. PorcoJr.
  • Aaron B. Beeler
  • Klavs F. Jensen
Communication

Abstract

In an effort to utilize microfluidics to enable photochemistry, we have devised a method for fabrication of devices with UV-transmissive glass. The photochemical device is successfully incorporated into a system utilizing high-pressure capillary mercury lamps and cooling system. We have demonstrated the ability to carry out photochemical transformations with substantial rate acceleration. Furthermore, we highlight the ability to carry out analytical-scale reactions on a pulse flow automated system while modulating wavelength and residence time to identify optimal photochemical reaction conditions. The analytical conditions were also successfully converted to continuous-flow preparative scale.

5. References

  1. 1.
    Coxon, J. M.; Halton, B. Organic Photochemistry; Cambridge University Press: Cambridge, 1987.Google Scholar
  2. 2.(a)
    Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103.CrossRefGoogle Scholar
  3. 2.(b)
    Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003–2020.CrossRefGoogle Scholar
  4. 3.
    Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725–2756.CrossRefGoogle Scholar
  5. 4.
    Esser, P.; Pohlmann, B.; Scharf, H.-D. Angew. Chem. Int. Ed. 1994, 33, 2009.Google Scholar
  6. 5.
    Horspool, W. H. Synthetic Organic Photochemistry; Springer: New York, 1984.CrossRefGoogle Scholar
  7. 6.
    Lu, H.; Schmidt, M. A.; Jensen, K. F. Lab Chip 2001, 1, 22–28.CrossRefGoogle Scholar
  8. 7.(a)
    Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675–680.CrossRefGoogle Scholar
  9. 7.(b)
    Wirth, T. Microreactors in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, 2008.CrossRefGoogle Scholar
  10. 7.(c)
    Hartman, R. L.; Jensen, K. F. Lab Chip 2009, 9, 2495.CrossRefGoogle Scholar
  11. 7.(d)
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318.CrossRefGoogle Scholar
  12. 7.(e)
    Geyer, K.; Gustavson, T.; Seeberger, P. H. Synlett 2009, 15, 2382.Google Scholar
  13. 7.(f)
    Kirschning, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972.CrossRefGoogle Scholar
  14. 7.(g)
    Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467.Google Scholar
  15. 7.(h)
    Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem. Int. Ed. 2009, 48, 4017–4021.CrossRefGoogle Scholar
  16. 7.(i)
    Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. Eur. J. 2008, 14, 7470–7477.CrossRefGoogle Scholar
  17. 7.(j)
    Yoshida, J.-I.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450–7459.CrossRefGoogle Scholar
  18. 8.
    Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney. J. R.; Ho, C. X.; Jensen, K. F.; Porco, J. A.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169–6180.CrossRefGoogle Scholar
  19. 9. (a)
    Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.; Berry, M. B.; Booker-Milburn, K. I. J. Org. Chem. 2005, 70, 7558–7564.CrossRefGoogle Scholar
  20. 9.(b)
    Sakeda, K.; Wakabayashi, K.; Matsushita, Y.; Ichimura, T.; Suzuki, T.; Wada, T.; Inoue, Y. J. Photochem. Photobiol. Chem. 2007, 192, 166–171.CrossRefGoogle Scholar
  21. 9.(c)
    Coyle, E. E.; Oelgemoller, M. Photochem. Photobiol. Sci. 2008, 7, 1313–1322.CrossRefGoogle Scholar
  22. 9.(d)
    Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.; Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 4007–4009.CrossRefGoogle Scholar
  23. 10.
    Matsushita, Y.; Kumada, S.; Wakabayashi, K.; Sakeda, K.; Ichimura, T. Chem. Lett. 2006, 35, 410–411. Schott, Glass 8337B Technical Data. www.us.schott.com/tubing/media/selector/datasheets/english/Glass_8337b_datasheet_english.pdf.CrossRefGoogle Scholar
  24. 11.
    Madou, M. J. Fundamentals of Microfabrication: The Science of Miniaturization; Boca Raton, FL: CRC Press, 2002.Google Scholar
  25. 12.
    Hanifin, J. W.; Cohen, E. J. Am. Chem. Soc. 1969, 91, 4494–4499.CrossRefGoogle Scholar
  26. 13.(a)
    Zimmerman, H. E.; Wilson, J. W. J. Am. Chem. Soc. 1964, 86, 4036.CrossRefGoogle Scholar
  27. 13.(b)
    Zimmerman, H. E.; Hancock, K. G. J. Am. Chem. Soc. 1968, 90, 3749.CrossRefGoogle Scholar
  28. 13.(c)
    Schuster, D. I.; Brown, R. H.; Resnick, B. M. J. Am. Chem. Soc. 1978, 100, 4504–4512.CrossRefGoogle Scholar
  29. 13.(d)
    Schuster, D. I.; Rao, J. M. J. Org. Chem. 1981, 46, 1515–1521.CrossRefGoogle Scholar
  30. 14.
    Shim, S. C.; Kim, D. S.; Yoo, D. J.; Wada, T.; Inoue, Y. J. Org. Chem. 2002, 67, 5718–5726.CrossRefGoogle Scholar
  31. 15.
    Coulson, D. R.; Yang, N. C. J. Am. Chem. Soc. 1966, 88, 4511–4512.CrossRefGoogle Scholar
  32. 16.(a)
    Fisch, M. H.; Richards, J. H. J. Am. Chem. Soc. 1968, 90, 1547–1553.CrossRefGoogle Scholar
  33. 16.(b)
    Natarajan, A.; Tsai, C. K.; Khan, S. I.; McCarren, P.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 9846–9847.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  • Ketan Pimparkar
    • 1
  • Bernard Yen
    • 1
  • John R. Goodell
    • 2
  • Veronique I. Martin
    • 2
  • Wen-Hsuan Lee
    • 1
  • John A. PorcoJr.
    • 2
  • Aaron B. Beeler
    • 2
  • Klavs F. Jensen
    • 1
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU)Boston UniversityBostonUSA

Personalised recommendations