Skip to main content

From a Review of Noble Metal versus Enzyme Catalysts for Glucose Oxidation Under Conventional Conditions Towards a Process Design Analysis for Continuous-flow Operation

Abstract

A methodology for the ex ante evaluation of different processing options is proposed. Current processes for glucose oxidation and possible improvements using microreactor technology are investigated. As twofold prime research objectives, the oxidation with noble metal catalyst versus enzymatic oxidation and the oxidation under conventional process conditions versus under Novel Process Windows are explored. Operation and design of an active and stable catalyst, reactor performance, and work-up are included. This ex ante analysis gives information of the critical aspects of a process prior to technology development and facilitates the development of new process routes; especially valuable if step and paradigm changing routes are undertaken, with even no vague idea on their performance potential and with high technological risk. The methodology used for gluconic acid production will be transferred to other chemicals which have the potential in using microreactor technology and Novel Process Windows.

References

  1. Röper, H.; Koch, H. Starch/Stärke 1988, 40, 453.

    Google Scholar 

  2. Vleeming, J. H. Deactivation of Carbon Supported Platinum Catalyst During Carbohydrate Oxidation. Ph.D. Thesis, Eindhoven University of technology, Eindhoven, 1997.

    Google Scholar 

  3. Biella, S.; et al. J. Catal. 2002, 206, 242–247.

    CAS  Google Scholar 

  4. Commoti, M.; et al. J. Catal. 2006, 244, 122–125.

    Google Scholar 

  5. Commoti, M.; et al. J. Mol. Catal. A Chem. 2006, 251, 89–92.

    Google Scholar 

  6. Znad, H.; et al. Process Biochem. 2004, 39, 1341–1345.

    CAS  Google Scholar 

  7. Ramachandran, S.; et al. Food Technol. Biotechnol. 2006, 44(2), 185–195.

    CAS  Google Scholar 

  8. Illg, T.; Löb, P.; Hessel, V. Bioorg. Med. Chem. 2010, 18(11), 3707–3719.

    CAS  PubMed  Google Scholar 

  9. Hessel, V.; Hardt, S.; Löwe, H. Chemical Micro Process Engineering–Fundamentals, Modelling and Reactions; Wiley-VCH: Weinheim, 2004.

    Google Scholar 

  10. Hessel, V.; Knobloch, C.; Löwe, H. Recent Patents Chem. Eng. 2008, 1, 1–16.

    CAS  Google Scholar 

  11. Roberge, D.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28(3), 318–323.

    CAS  Google Scholar 

  12. Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors: New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000.

    Google Scholar 

  13. Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293–303.

    CAS  Google Scholar 

  14. Pennemann, H.; et al. Chem. Eng. Sci. 2004, 59, 4789–4794.

    CAS  Google Scholar 

  15. POLYCAT. EU large-scale project, modern polymer-based catalysts and microflow conditions as key elements of innovations in fine chemical synthesis; 2010.

    Google Scholar 

  16. Wang, S. Anal. Biochem. 2010, 405, 230–235.

    CAS  PubMed  Google Scholar 

  17. Gangwal, V. Platinum Catalyzed Alcohol Oxidation: Kinetics, Reaction Engineering and Process Design. Ph.D. Thesis, Eindhoven University of technology, Eindhoven, 2005.

    Google Scholar 

  18. Besson, M.; Gallezot, P. Catal. Today 2000, 57, 127–141.

    CAS  Google Scholar 

  19. Swarts, J. Chem. Eng. J. 2010, 162, 301–306.

    CAS  Google Scholar 

  20. Miyazaki, M.; et al. Biotechnol. Genet. Eng. Rev. 2008, 25, 405–428.

    CAS  PubMed  Google Scholar 

  21. European roadmap for process intensification, http://www.senternovem.nl/mmfiles/Report%2520%2527European%2520Roadmap%2520for%2520Process%2520Intensification%2527_tcm24-258503_tcm24-271299.pdf, last accessed: Apr 2011.

  22. Huebschmann, S.; Kralisch, D.; Hessel, V.; Krtschil, U.; Kompter, C. Chem. Eng. Technol. 2009, 32(11), 1757–1765.

    CAS  Google Scholar 

  23. Hessel, V. Chem. Eng. Technol. 2009, 32(11), 1655–1681.

    CAS  Google Scholar 

  24. Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1(4), 467–478.

    CAS  Google Scholar 

  25. Kralisch, D.; Kreisel, G. Chem. Eng. Sci. 2007, 62(4), 1094.

    CAS  Google Scholar 

  26. Kralisch, D. Application of LCA in Process Development. In Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes; Lapkin, A., Constable, D. J. C., Eds.; John Wiley, Chichester, UK, 2009.

    Google Scholar 

  27. Krtschil, U.; Hessel, V.; Kralisch, D.; Kreisel, G.; Küpper, M.; Schenk, R. Chimia 2006, 60(9), 611–617.

    CAS  Google Scholar 

  28. Hessel, V.; Cortese, B.; de Croon, M. H. J. M. Chem. Eng. Sci. DOI:10.1016/j.ces.2010.08.018.

    CAS  Google Scholar 

  29. Malat, T.; Baiker, A. Catal. Today 1995, 24, 143–150.

    Google Scholar 

  30. Dijkgraaf, P. J. M. Oxidation of Glucose to Glucaric Acid by Pt/C Catalyst. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 1989.

    Google Scholar 

  31. Gogová, Z.; Hanika, J. Chem. Eng. J. 2009, 150, 223–230.

    Google Scholar 

  32. Matveeva, V.; et al. Top Catal. 2009, 52, 387–393.

    CAS  Google Scholar 

  33. Önal, Y.; Schimpf, S.; Claus, P. J. Catal. 2004, 223, 122–133.

    Google Scholar 

  34. Odebunmi, E. O.; Owalude, S. O. J. Appl. Sci. Environ. Manag. 2007, 11(4), 95–100.

    Google Scholar 

  35. Beltrame, P. J. Catal. 2004, 228, 282–287.

    CAS  Google Scholar 

  36. Klein, J.; et al. Biochem. Eng. J. 2002, 10, 197–205.

    CAS  Google Scholar 

  37. Doneva, T.; Vassilief, C.; Donev, R. Biotechnol. Lett. 1999, 21, 1107–1111.

    CAS  Google Scholar 

  38. Blandino, A.; Macias, M.; Cantero, D. Process Biochem. 2001, 36, 601–606.

    CAS  Google Scholar 

  39. Bankar, S. B.; et al. Biotechnol. Adv. 2009, 27, 489–501.

    CAS  PubMed  Google Scholar 

  40. Godjevargova, T.; Dayal, R.; Turmanova, S. Macromol. Biosci. 2004, 4, 950–956.

    CAS  PubMed  Google Scholar 

  41. Hestekin, J. A.; et al. J. Appl. Electrochem. 2002, 32, 1049–1052.

    CAS  Google Scholar 

  42. Giorno, L.; Drioli, E. TIBTECH 2000, 18, 339–349.

    CAS  Google Scholar 

  43. Bao, J.; et al. Biochem. Eng. J. 2004, 22, 33–41.

    CAS  Google Scholar 

  44. Miron, J.; et al. Enzym. Microb. Technol. 2004, 34, 513–522.

    CAS  Google Scholar 

  45. Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008; p 412.

    Google Scholar 

  46. Dworkin, M.; et al. (2006) The Prokaryotes: A Handbook of the Biology of Bacteria: Symbiotic Associations, Biotechnology, Applied Microbiology; Springer Science and Business Media, 2006; Vol. 1.

  47. Sulman, E.; et al. J. Mol. Catal. A Chem. 2007, 278, 112–119.

    CAS  Google Scholar 

  48. Rahman, M.; Heikkilä, A. M.; Hurme, M. J. Loss Prev. Proc. Ind. 2005, 18, 327.

    Google Scholar 

  49. IMM Falling film microreactor, technical data, http://www.immmainz.de/fileadmin/IMM-upload/Flyer-Katalog_etc/Catalogue09_FFMR.pdf, last accessed: Mar 2011.

  50. Zanfir, M. Ind. Eng. Chem. Res. 2005, 44, 1742–1751.

    CAS  Google Scholar 

  51. Ehrich, H.; Linke, D.; Morgenschweis, K.; Baerns, M.; Jaehnisch, K. Chimia 2002, 56, 647–653.

    CAS  Google Scholar 

  52. Yeong, K. K.; et al. Catal. Today 2003, 81, 641–651.

    CAS  Google Scholar 

  53. Jaehnisch, K.; Baerns, M.; Hessel, V.; Ehrfeld, W.; Haverkamp, V.; Loewe, H.; Wille, C.; Guber, A. J. Fluor. Chem. 2000, 105, 117–128.

    Google Scholar 

  54. Vankayala, B. K.; et al. Int. J. Chem. React. Eng. 2007, 5, Article A91.

    Google Scholar 

  55. Commenge, J. M.; et al. Chem. Eng. Sci. 2006, 61, 597–604.

    CAS  Google Scholar 

  56. Commenge, J. M.; et al. Chem. Eng. Sci. 2011, 66, 1212–1218.

    CAS  Google Scholar 

  57. van Male, P.; et al. Int. J. Heat Mass Tran. 2004, 47, 87–99.

    Google Scholar 

  58. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2007; Electronic Release.

  59. Tonkovich, A. Trans IChemE A Chem. Eng. Res. Des. 2005, 83(A6): 634–639.

    CAS  Google Scholar 

  60. Losey, M. W.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2001, 40, 2555–2562.

    CAS  Google Scholar 

  61. Al Dahhan, Larachi, Dudukovic, Laurent. Ind. Eng. Chem. Res. 1997, 36(8), 3292–3314.

    CAS  Google Scholar 

  62. White, R.; et al. Chem. Soc. Rev. 2009, 38, 481–494.

    CAS  PubMed  Google Scholar 

  63. Sheldon, R. Adv. Synth. Catal. 2007, 349, 1289–1307.

    CAS  Google Scholar 

  64. Krenkova, J.; Foret, F. Electrophoresis 2004, 25, 3550–3563.

    CAS  PubMed  Google Scholar 

  65. Matosevic, S. Biotechnol. Prog. 2010, 26(1), 118–126.

    CAS  PubMed  Google Scholar 

  66. Urban, P. L.; et al. Biotechnol. Adv. 2006, 24, 42–57.

    CAS  PubMed  Google Scholar 

  67. Schilke, K. Biotechnol. Prog. 2010, 26(6), 1597–1605.

    CAS  PubMed  Google Scholar 

  68. Thomsen, M. Biotechnol. J. 2009, 4, 98–107.

    CAS  PubMed  Google Scholar 

  69. Ji, X.; et al. Talanta 2010, 82, 1170–1174.

    CAS  PubMed  Google Scholar 

  70. Matsuura, S.; et al. Chem. Eng. J. 2010.

    Google Scholar 

  71. Mugo, M.; et al. J. Mol. Catal. B Enzym. 2010, 67, 202–207.

    CAS  Google Scholar 

  72. Miyazaki, M.; et al. Chem. Eng. J. 2004, 101, 277–284.

    CAS  Google Scholar 

  73. Mohr, X.; et al. Lab Chip 2010, 10, 1929–1936.

    CAS  PubMed  Google Scholar 

  74. Baiker, A. Chem. Rev. 1999, 99, 453–473.

    CAS  PubMed  Google Scholar 

  75. Kayrak-Talay, D.; Akman, U.; Hortac, O. J. Supercrit. Fluids 2007, 42, 273–281.

    CAS  Google Scholar 

  76. CheManager, www.chemanager-online.com, last accessed: Jun 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hessel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dencic, I., Meuldijk, J., de Croon, M. et al. From a Review of Noble Metal versus Enzyme Catalysts for Glucose Oxidation Under Conventional Conditions Towards a Process Design Analysis for Continuous-flow Operation. J Flow Chem 1, 13–23 (2011). https://doi.org/10.1556/jfchem.2011.00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/jfchem.2011.00005

Keywords

  • glucose oxidation
  • process intensification
  • falling film microreactor
  • novel process windows
  • glucose oxidase