Journal of Flow Chemistry

, Volume 1, Issue 2, pp 62–67 | Cite as

A Continuous-Flow System for Asymmetric Hydrogenation Using Supported Chiral Catalysts

  • József Madarász
  • Gergely Farkas
  • Szabolcs Balogh
  • Áron Szölloősy
  • József Kovács
  • Ferenc Darvas
  • László Ürge
  • József Bakos
Full Paper


Highly active immobilized hydrogenation catalytic systems were used in the H-Cube™ hydrogenation reactor. “In situ” produced [Rh(COD)((S)-MonoPhos)2]BF4 complex was immobilized on commercially available Al2O3 and mesoporous Al2O3 by means of phosphotungstic acid (PTA), respectively. The optimum reaction conditions were determined and studied at different temperature, pressure, and flow rate values. Furthermore, the effect of the substrate concentration, microstructure of the support, and the stability of the complex were investigated. A continuous-flow reaction system using a stationary-phase catalyst for the asymmetric hydrogenation of methyl acetamidoacrylate was developed and run continuously for 12 h with >99% conversion and 96–97% enantioselectivity.


asymmetric catalysis continuous-flow system heterogeneous catalysis hydrogenation supported catalysts rhodium 

5. References

  1. 1.(a)
    van der Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539–11540.CrossRefGoogle Scholar
  2. 1.(b)
    van der Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx, H. J. W.; de Vries, J. G. Adv. Synt. Catal. 2003, 345, 308–323.CrossRefGoogle Scholar
  3. 2.
    Augustine, R. L.; Tanielyan, S. K.; Mahata, N.; Gao, Y.; Zsigmond, A.; Yang H. Appl. Catal. A 2003, 256, 69–76.CrossRefGoogle Scholar
  4. 3.
    Simons, C.; Hannefeld, U.; Arends, I. W. C. E.; Sheldon, R. A.; Maschmeyer, T. Chem. Eur. J. 2004, 10, 5829–5835.CrossRefGoogle Scholar
  5. 4.(a)
    Simons, C.; Hannefeld, U.; Arends, I. W. C. E.; Minnaard, A. J.; Maschmeyer, T.; Sheldon, R. A. Chem. Commun. J. 2004, 2830–2831.Google Scholar
  6. 4.(b)
    Simons, C.; Hannefeld, U.; Arends, I. W. C. E.; Maschmeyer, T.; Sheldon, R. A. J. Catal. 2006, 239, 212–219.CrossRefGoogle Scholar
  7. 5.
    For selected reviews on continuous flow reactors and processes, see (a)_Kirsching, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972–5990.CrossRefGoogle Scholar
  8. 5.(b)
    Wiles, C.; Watts, P. Eur. J. Org. Chem. 2008, 1655–1671.Google Scholar
  9. 5.(c)
    Uozumi, Y.; Yamada, Y. M. A.; Beppu, T.; Fukuyama, N.; Ueno, M.; Kitamori, T. J. Am. Chem. Soc. 2006, 128, 15994–15995.CrossRefGoogle Scholar
  10. 5.(d)
    Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559–1561.CrossRefGoogle Scholar
  11. 6.(a)
    Kruk, M.; Jaroniec, M.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B. 2003, 107, 2205–2213.CrossRefGoogle Scholar
  12. 6.(b)
    Bao, X. Y.; Li, X.; Zhao, X. S. J. Phys. Chem. B. 2006, 110, 2656–2661.CrossRefGoogle Scholar
  13. 7.(a)
    Liu, G. H.; Yao, M.; Zhang, F.; Gao, Y.; Li, H. X. Chem. Commun. 2008, 347–349.Google Scholar
  14. 7.(b)
    Liu, G. H.; Yao, M.; Wang, G. Y.; Liu, M. M.; Zhang, F.; Li, H. X. Adv. Synth. Catal. 2008, 350, 1464–1468.CrossRefGoogle Scholar
  15. 8.
    Newman, A. D.; Lee, A. F.; Wilson, K.; Young, N. A. Catal. Lett. 2005, 102, 45–50.CrossRefGoogle Scholar
  16. 9.
    Luan, Z. Chem. Mater. 1999, 11, 1621–1626.CrossRefGoogle Scholar
  17. 10.
    Shi, L.; Wang, X.; Sandoval, C. A.; Wang, Z.; Li, H.; Wu, J.; Yu, L.; Ding, K. Chem. Eur. J. 2009, 15, 9855–9867.CrossRefGoogle Scholar
  18. 11.
    Hulst, R.; de Vries, N. K.; Feringa, B. L. Tetrahedron Asymmetry 1994, 5, 699–708.CrossRefGoogle Scholar
  19. 12.
    Schenk, T. G.; Downes, J. M.; Milne, C. R. C.; MacKenzie, P. B.; Boucher, T. G.; Whelan, J.; Bosnich, B. Inorg. Chem. 1985, 24, 2334.CrossRefGoogle Scholar
  20. 13.
    Gladiali, S.; Pinna, L. Tetrahedron Asymmetry 1991, 2, 623–632.CrossRefGoogle Scholar
  21. 14.
    Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309–319.CrossRefGoogle Scholar
  22. 15.
    Barrett, P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373–380.CrossRefGoogle Scholar
  23. 16.
  24. 17.
    Shan, Z.; Jansen, J. C.; Zhou, W.; Maschmeyer, T. Appl. Catal. A 2003, 254, 339–343.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  • József Madarász
    • 1
  • Gergely Farkas
    • 1
  • Szabolcs Balogh
    • 1
  • Áron Szölloősy
    • 2
  • József Kovács
    • 1
  • Ferenc Darvas
    • 3
  • László Ürge
    • 3
  • József Bakos
    • 1
  1. 1.Department of Organic Chemistry, Institute of Environmental EngineeringUniversity of PannoniaVeszprémHungary
  2. 2.Department of General and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  3. 3.ThalesNano Nanotechnology Inc.BudapestHungary

Personalised recommendations