Skip to main content
Log in

Quantitative Relationships Between Molecular Descriptors, Chromatographic Retention Behavior, and In Vitro Antituberculosis Activity of Phytol Derivatives

  • Original Research Papers
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

The lipophilic character of phytol derivatives has been studied using reverse-phase planar chromatographic procedures. Methanol-water and acetonitrile-water binary mixtures as mobile phases with C18 and cyano as stationary phases were used in order to determine the lipophilicity parameters and C0. The classical values were compared with the factor scores obtained by principal component analysis based also on the TLC retention data. Moderate to high correlation between the values and slopes (specific hydrophobic surface area) was observed, which reflects the involvement of secondary interactions in the TLC retention behavior. The phytol derivatives considered in this study were screened for their antituberculosis activity against the H37Rv strain. Chromatographically obtained lipophilicity parameters were correlated with the calculated log P values and minimum inhibitory concentration (MIC) values. Principal component analysis established the dominant pattern in the chromatographic indices. Quantitative structure-retention relationship and quantitative structure-activity (antitubercular) relationship investigations were performed on the lipophilicities and molecular descriptors of phytol derivatives using partial least squares. The predicted biological activities support the fact that the chromatographic processes of the investigated phytol derivatives influence the partitioning over biomembrane and are controlled mainly by the lipophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bohlmann, G.M. Gauen, R. Croteau, Proc. Natl. Acad. Sci. 95 (1998) 4126–4133.

    Article  CAS  Google Scholar 

  2. J. Brown, G. Mei, F.B. Gibberd, D. Burston, P.D. Mayne, J.E. McClinchy, M. Sidey, J. Hum. Nut. Diet 6 (1993) 295–305.

    Article  Google Scholar 

  3. B.P. Atshaves, A.L. McIntosh, H.R. Payne, J. Mackie, A.B. Kier, F. Schroeder, Am. J. Physiol. Cell Physiol. 288 (2005) 543–558.

    Article  Google Scholar 

  4. N.M. Verhoeven, R.J. Wanders, B.T. Poll-The, J.M. Saudubray, C. Jakobs, J. Inhet. Met. Dis. 21 (1998) 697–728.

    Article  CAS  Google Scholar 

  5. J.P. Saludes, M.J. Garson, S.G. Franzblau, A.M. Aguinaldo, Phytol. Res. 16 (2002) 683–685.

    Article  CAS  Google Scholar 

  6. D. Saikia, S. Parihar, D. Chanda, S. Ojha, J.K. Kumar, C.S. Chanotiya, K. Shanker, A.S. Negi, Bioorg. Med. Chem. Lett. 20 (2010) 508–512.

    Article  CAS  Google Scholar 

  7. WHO Report, Global Tuberculosis Control — Epidemiology, Strategy, Financing — Key Points, Switzerland, Geneva 22, 2009, pp. 1–4.

  8. E.B. De-Melo, J.P.A. Martins, T.C.M. Jorge, M.C. Friozi, M.M.C. Ferreir, Eur. J. Med. Chem. 45 (2010) 4562–4569.

    Article  Google Scholar 

  9. A. Pyka, J. Planar Chromatogr. 21 (2008) 205–208.

    Article  CAS  Google Scholar 

  10. A. Wieckowska, M. Bajda, K. Wieckowski, B. Malawska, J. Planar Chromatogr. 23 (2010) 359–364.

    Article  CAS  Google Scholar 

  11. C. Sarbu, B. Malawska, J. Liq. Chromatogr. Relat. Technol. 2 (2000) 2143–2154.

    Article  Google Scholar 

  12. K. Valko, C. Bevan, D. Reynolds, Anal. Chem. 69 (1997) 2022–2029.

    Article  CAS  Google Scholar 

  13. G. Cimpan, M. Hadaruga, D.V. Miclaus, J. Chromatogr. A 869 (2000) 49–55.

    Article  CAS  Google Scholar 

  14. D. Vrakas, D. Hadjipavlou-Litina, A. Tsantili-Kakoulidou, J. Pharm. Biomed. Anal. 39 (2005) 908–913.

    Article  CAS  Google Scholar 

  15. R.N. Waterhouse, Mol. Imag. Biol. 5 (2003) 376–389.

    Article  Google Scholar 

  16. M. Janicka, D.P. Ozga, J. Planar Chromatogr. 23 (2010) 396–399.

    Article  CAS  Google Scholar 

  17. A.A.B. Atrrog, M. Natic, T. Tosti, D. Milojkovic-Opsenica, I. Dorevic, V. Tesevic, M. Jadranin, S. Milosavljevic, M. Lazic, S. Radulovicd, Z. Tesica, Biomed.Chromatogr. 23 (2008) 250–256.

    Article  Google Scholar 

  18. C. Sarbu, T. Dakovic-Sekulic, N. Perisic-Janjic, J. Pharm. Biomed. Anal. 30 (2002) 739–745.

    Article  CAS  Google Scholar 

  19. T. Baczek, R. Kaliszan, J. Chromatogr. A 987 (2003) 29–37.

    Article  CAS  Google Scholar 

  20. E. Forgacs, T. Cserhati, Anal. Chim. Acta 348 (1997) 481–487.

    Article  CAS  Google Scholar 

  21. C. Sarbu, S. Todor, J. Chromatogr. A 822 (1998) 263–269.

    Article  CAS  Google Scholar 

  22. K. Heberger, J. Chromatogr. A 1158 (2007) 273–305.

    Article  CAS  Google Scholar 

  23. R. Sabet, M. Mohammadpoura, A. Sadeghia, A. Fassihi, Eur. J. Med. Chem. 45 (2010) 1113–1118.

    Article  CAS  Google Scholar 

  24. G.D. Kleinbaum, Applied Regression Analysis and Multivariable Methods, Brooks/Cole Publishing Company, Pacific Grove, CA, 1998.

    Google Scholar 

  25. S. Singh, J.K. Kumar, D. Saikia, K. Shanker, J.P. Thakur, A.S. Negi, S. Banerjee, Eur. J. Med. Chem. 45 (2010) 4379–4382.

    Article  CAS  Google Scholar 

  26. P. Kumari, K. Misra, B.S. Sisodia, U. Faridi, S. Srivastava, S. Luqman, M.P. Darokar, A.S. Negi, M.M. Gupta, S.C. Singh, J.K. Kumar, Planta Medica 75 (2009) 59–61.

    Article  CAS  Google Scholar 

  27. D. Vrakasa, I. Panderia, D. Hadjipavlou-Litinab, A. Tsantili-Kakoulidou, QSAR Comb. Sci. 24 (2004) 254–260.

    Article  Google Scholar 

  28. ChemBio Office Ultra 12 Suite, 2009; http://www.cambridgesoft.com

  29. Qikprop version 3.2, Schrodinger, LLL, New York, 2009; http://www.schrodinger.com

  30. J. Hintze, NCSS and PASS, Number Cruncher Statistical Systems, Kaysville, UT, 2001; http://www.ncss.com

  31. Unscramble-9.6 User Manual Camo, 2005; http://www.camo.usa

  32. C. Koukoulitsa, A. Tsantili-Kakoulidou, T. Mavromoustakos, I. Chinoud, QSAR Comb. Sci. 28 (2009) 785–789.

    Article  CAS  Google Scholar 

  33. T. Lu, C.L. Cantrell, S.L. Robbs, S.G. Franzblau, N.H. Fischer, Planta Medica 64 (1998) 665–667.

    Article  CAS  Google Scholar 

  34. N.H. Fischer, T. Lu, C.L. Cantrell, J. Castaneda-Acosta, L. Quijano, S.G. Franzblau, Phytochemistry 49 (1998) 559–564.

    Article  CAS  Google Scholar 

  35. C.E. Barry, R.A. Slayden, A.E. Sampson, R.E. Lee, Biochem. Pharm. 59 (2000) 221–231.

    Article  CAS  Google Scholar 

  36. N.D. Connell, H. Nikaido, Membrane Permeability and Transport in Mycobacterium tuberculosis, in: B.R. Bloom (ed.), Tuberculosis, Pathogenesis, Protection and Control, ASM Press, Washington DC, 1994, pp. 333–351.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuna Shanker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Meena, A., Negi, A.S. et al. Quantitative Relationships Between Molecular Descriptors, Chromatographic Retention Behavior, and In Vitro Antituberculosis Activity of Phytol Derivatives. JPC-J Planar Chromat 25, 10–18 (2012). https://doi.org/10.1556/JPC.25.2012.1.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/JPC.25.2012.1.2

Key Words

Navigation