Journal of Flow Chemistry

, Volume 5, Issue 3, pp 139–141 | Cite as

Rapid-Flow Synthesis of Zn-Qn Complexes: Teaching Old Ligands New Tricks with Reactive Na2(HZnEt2)2

  • Levi Zane Miller
  • Jeremy J. Hrudka
  • Yuta R. Naro
  • Michael Haaf
  • Michael Shatruk
  • D. Tyler McQuade


A new method involving rapid flow of ligand solutions through a cartridge loaded with crystalline sodium diethylzinc hydride and subsequent isolation of three Zn-hydroxyquinoline complexes is described. The rapid-flow approach allowed the pyrophoric starting material to be used outside of the glovebox atmosphere and enabled fast mixing with ligand solutions for zinc complexation in seconds. The identity of all complexes was established by proton (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction.


packed bed hydroxyquinoline complexes zinc chemistry cartridge chemistry 

Supplementary material

41981_2015_5030139_MOESM1_ESM.pdf (470 kb)
Supplementary material, approximately 481 KB.


  1. 1.
    Lennartson, A.; Hâkansson, M.; Jagner, S. Angew. Chem., Int. Ed. 2007, 46, 6678–6680.CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.; Fiege, M.; Osetska, O. Coord. Chem. Rev. 2008, 252, 812–824.CrossRefGoogle Scholar
  3. 3.
    Meyers, A.; South, C.; Weck, M. Chem. Commun. 2004, 1176–1177.Google Scholar
  4. 4.
    Sharma, A.; Singh, D.; Makrandi, J.; Kamalasanan, M.; Shrivastva, R.; Singh, I. Mater. Lett. 2007, 61, 4614–4617.CrossRefGoogle Scholar
  5. 5.
    Sokolowski, K.; Justyniak, I.; Sliwinski, W.; Sottys, K.; Tulewicz, A.; Moszynski, R.; Lipkowski, J.; Lewinski, J. Chem. Eur. J. 2012, 18, 5637–5645.CrossRefGoogle Scholar
  6. 6.
    Hallett, A.; Pope, S. Inorg. Chim. Acta 2012, 387, 145–150.CrossRefGoogle Scholar
  7. 7.
    Opalka, S. M.; Park, J. K.; Longstreet, A. R.; McQuade, D. T. Org. Lett. 2013, 15, 996–990.CrossRefGoogle Scholar
  8. 8.(a)
    Alonso, N.; Miller, L. Z.; Munoz, J. M.; Alcazar, J.; McQuade, D. T. Adv. Syn. Cat. 2014, DOI: 10.1002/adsc.201400243Google Scholar
  9. (b).
    Noël, T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8900–8903.CrossRefGoogle Scholar
  10. 9.
    Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun. 2013, 49, 9896–9904.CrossRefGoogle Scholar
  11. 10.
    Nagaki, A.; Ichinari, D.; Yoshida, J. J. Am. Chem. Soc. 2014, 136, 12245–12248.CrossRefGoogle Scholar
  12. 11.
    Wang, L.; Pan, X.; Yao, L.; Tang, N.; Wu, J. Eur. J. Inorg. Chem. 2011, 632–636.Google Scholar
  13. 12.
    Addison, A. W.; Rao, T. N.; Reedjik, J.; van Rijn, J.; Verschoor, C. G. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.Google Scholar
  14. 13.
    Lambourdette, G.; Lee, D.; Patrick, B.; Ezhova, M.; Mehrkodavandi, P. Organometallics 2009, 28, 1309–1319.CrossRefGoogle Scholar
  15. 14.
    Bakewell, C.; Platell, R.; Cary, S.; Hubbard, S.; Roaf, J.; Levine, A.; White, A.; Long, N.; Haaf, M.; Williams, C. Organometallics 2012, 31, 4729–4736.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Levi Zane Miller
    • 1
  • Jeremy J. Hrudka
    • 1
  • Yuta R. Naro
    • 2
  • Michael Haaf
    • 2
  • Michael Shatruk
    • 1
  • D. Tyler McQuade
    • 1
  1. 1.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  2. 2.Center for Natural SciencesIthaca CollegeNew YorkUSA

Personalised recommendations