Advertisement

Journal of Flow Chemistry

, Volume 4, Issue 2, pp 92–96 | Cite as

Atom Transfer Radical Polymerization in Continuous Microflow Effect of Process Parameters

  • Dambarudhar Parida
  • Christophe A. Serra
  • Rigoberto Ibarra Gómez
  • Dhiraj K. Garg
  • Yannick Hoarau
  • Michel Bouquey
  • René Muller
Full Paper

Abstract

We report on the synthesis of 2-(dimethylamino)ethyl methacrylate by atom transfer radical polymerization (ATRP) in tubular microreactors. Different process parameters, temperature, pressure, and shear rate, were considered to accelerate the reaction. Increase in temperature induced a faster reaction, but controlled nature of ATRP decreased past a threshold value that can be increased up to 95 °C by reducing the residence time. Positive effect of pressure was observed since significant increases in monomer conversion (+12.5 %) and molecular weight (+5,000 g/mol) were obtained. Moreover, polydispersity index was found to decrease from 1.52 at normal pressure to 1.44 at 100 bars. Benefit of pressure was more visible in smaller reaction space (smaller tube diameter). Finally, shear rate has quite an influence on the early stage of the polymerization and is expressed by an increase in the reaction rate. However, the effect was dimed for long residence times.

Keywords

ATRP microreactor high pressure polymerization 

Supplementary material

41981_2014_4020092_MOESM1_ESM.pdf (361 kb)
Supplementary material, approximately 370 KB.

References

  1. 1.
    Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93–146.CrossRefGoogle Scholar
  2. 2.(a)
    Wu, T.; Mei, Y.; Cabral, J. T.; Xu, C.; Beers, K. L. J. Am. Chem. Soc. 2004, 126, 9880–9881CrossRefGoogle Scholar
  3. (b).
    Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J.-I. J. Am. Chem. Soc. 2004, 126, 14702–14703.CrossRefGoogle Scholar
  4. 3.(a)
    Becker, H.; Gärtner, C. Rev. Mol. Biotechnol. 2001, 82, 89–99CrossRefGoogle Scholar
  5. (b).
    Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Org. Process Res. Dev. 2004, 8, 440–54.CrossRefGoogle Scholar
  6. 4.(a)
    Iwasaki, T.; Yoshida, J.-I. Macromolecules 2005, 38, 1159–1163CrossRefGoogle Scholar
  7. (b).
    Miyazaki, M.; Honda, T.; Nakamura, H.; Maeda, H. Chem. Eng. Technol. 2007, 30, 300–304CrossRefGoogle Scholar
  8. (c).
    Rosenfeld, C.; Serra, C.; Brochon, C.; Hessel, V.; Hadziioannou, G. Chem. Eng. J. 2008, 135, Supplement 1, S242–S246CrossRefGoogle Scholar
  9. (d).
    Parida, D., Serra, C.; Bally, F.; Garg, D. K.; Hoarau, Y. Green Process. Synth. 2012, 1, 8Google Scholar
  10. (e).
    Wilms, D.; Nieberle, J.; Klos, J.; Löwe, H.; Frey, H. Chem. Eng. Technol. 2007, 30, 1519–1524.CrossRefGoogle Scholar
  11. 5.(a)
    Nagaki, A.; Tomida, Y.; Yoshida, J.-I. Macromolecules 2008, 41, 6322–6330CrossRefGoogle Scholar
  12. (b).
    Nagaki, A.; Tomida, Y.; Miyazaki, A.; Yoshida, J.-I. Macromolecules 2009, 42, 4384–4387CrossRefGoogle Scholar
  13. (c).
    Nagaki, A.; Miyazaki, A.; Tomida, Y.; Yoshida, J.-I. Chem. Eng. J. 2011, 167, 548–555CrossRefGoogle Scholar
  14. (d).
    Iida, K.; Chastek, T. Q.; Beers, K. L.; Cavicchi, K. A.; Chun, J.; Fasolka, M. J. Lab Chip 2009, 9, 339–345.CrossRefGoogle Scholar
  15. 6.(a)
    Fukuyama, T.; Kajihara, Y.; Ryu, I.; Studer, A. Synthesis 2012, 44, 2555–2559CrossRefGoogle Scholar
  16. (b).
    Rosenfeld, C.; Serra, C.; Brochon, C.; Hadziioannou, G. Lab Chip 2008, 8, 1682–1687CrossRefGoogle Scholar
  17. (c).
    Bally, F.; Serra, C. A.; Hessel, V.; Hadziioannou, G. Macromol. React. Eng. 2010, 4, 543–561CrossRefGoogle Scholar
  18. (d).
    Bally, F.; Serra, C. A.; Brochon, C.; Hadziioannou, G. Macromol. Rapid Commun. 2011, 32, 1820–1825CrossRefGoogle Scholar
  19. (e).
    Hornung, C. H.; Guerrero-Sanchez, C.; Brasholz, M.; Saubern, S.; Chiefari, J.; Moad, G.; Rizzardo, E.; Thang, S. H. Org. ProcessRes. Dev. 2011, 15, 593–601CrossRefGoogle Scholar
  20. (f).
    Voicu, D.; Scholl, C.; Li, W.; Jagadeesan, D.; Nasimova, I.; Greener, J.; Kumacheva, E. Macromolecules 2012, 45, 4469–4475CrossRefGoogle Scholar
  21. (g).
    Noda, T.; Grice, A. J.; Levere, M. E.; Haddleton, D. M. Eur. Polym. J. 2007, 43, 2321–2330.CrossRefGoogle Scholar
  22. 7.
    Diehl, C.; Laurino, P.; Azzouz, N.; Seeberger, P. H. Macromolecules 2010, 43, 10311–10314.CrossRefGoogle Scholar
  23. 8.
    Wang, Y.; Schroeder, H.; Morick, J.; Buback, M.; Matyjaszewski, K. Macromol. Rapid Commun. 2013, 34, 604–609.CrossRefGoogle Scholar
  24. 9.(a)
    Xia, J.; Johnson, T.; Gaynor, S. G.; Matyjaszewski, K.; DeSimone, J. Macromolecules 1999, 32, 4802–4805CrossRefGoogle Scholar
  25. (b).
    Rzayev, J.; Penelle, J. Angew. Chem., Int. Ed. 2004, 43, 1691–1694CrossRefGoogle Scholar
  26. (c).
    Morick, J.; Buback, M.; Matyjaszewski, K. Macromol. Chem. Phys. 2011, 212, 2423–2428CrossRefGoogle Scholar
  27. (d).
    Mueller, L.; Jakubowski, W.; Matyjaszewski, K.; Pietrasik, J.; Kwiatkowski, P.; Chaladaj, W.; Jurczak, J. Eur. Polym. J. 2011, 47, 730–734.CrossRefGoogle Scholar
  28. 10.
    Ogo, Y.; Yokawa, M. Macromol. Chem. Phys. 1977, 178, 453–64.CrossRefGoogle Scholar
  29. 11.(a)
    Vieira dos Santos, F. J.; Castro, C. A. N. Int. J. Thermophys. 1997, 18, 367–378CrossRefGoogle Scholar
  30. (b).
    Et-Tahir, A.; Boned, C.; Lagourette, B.; Xans, P. Int. J. Thermophys. 1995, 16, 1309–1334CrossRefGoogle Scholar
  31. (c).
    Yeo, S. D.; Kiran, E. J. Supercrit. Fluids 1999, 15, 261–272.CrossRefGoogle Scholar
  32. 12.
    Morick, J.; Buback, M.; Matyjaszewski, K. Macromol. Chem. Phys. 2011, 212, 2423–2428.CrossRefGoogle Scholar
  33. 13.
    Taylor, G. I. Proc. R. Soc. London, Ser. A 1953, 219, 186–203.CrossRefGoogle Scholar
  34. 14.
    Levenspiel, O. Chemical Reaction Engineering, 3rd edition; Wiley: New York, 1999.Google Scholar
  35. 15.
    Yamashita, K.; Yamaguchi, Y.; Miyazaki, M.; Nakamura, H.; Shimizu, H.; Maeda, H. Anal. Biochem. 2004, 332, 274–279.CrossRefGoogle Scholar
  36. 16.(a)
    Brown, W.; Nicolai, T. Colloid. Polym. Sci. 1990, 268, 977–990CrossRefGoogle Scholar
  37. (b).
    Omari, A.; Moan, M.; Chauveteau, G. Rheol. Acta 1989, 28, 520–526.CrossRefGoogle Scholar
  38. 17.(a)
    Ripoll, M.; Winkler, R. G.; Gompper, G. Phys. Rev. Lett. 2006, 96, 188302CrossRefGoogle Scholar
  39. (b).
    Huang, C.-C.; Winkler, R. G.; Sutmann, G.; Gompper, G. Macromolecules 2010, 43, 10107–10116CrossRefGoogle Scholar
  40. (c).
    Chen, W.; Chen, J.; Liu, L.; Xu, X.; An, L. Macromolecules 2013, 46, 7542–7549.CrossRefGoogle Scholar
  41. 18.
    Agarwal U. S.; Khakhar, D. V. Nature 1992, 360, 53–55.CrossRefGoogle Scholar
  42. 19.
    Leveson, P.; Dunk, W. A. E.; Jachuck, R. J. J. Appl Polym. Sci. 2004, 94, 1365–1369.CrossRefGoogle Scholar
  43. 20.
    Anton, N.; Bally, F.; Serra, C. A.; Ali, A.; Arntz, Y.; Mely, Y.; Zhao, M.; Marchioni, E.; Jakhmola, A.; Vandamme, T. F. Soft Matter 2012, 8, 10628–10635.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • Dambarudhar Parida
    • 1
  • Christophe A. Serra
    • 1
  • Rigoberto Ibarra Gómez
    • 1
  • Dhiraj K. Garg
    • 2
  • Yannick Hoarau
    • 2
  • Michel Bouquey
    • 1
  • René Muller
    • 1
  1. 1.Groupe d’intensification et d’intégration des Procédés Polymères (G2IP), Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES) - UMR 7515 CNRS, École Européenne de Chimie, Polymères et Matériaux (ECPM)Université de Strasbourg (UdS)StrasbourgFrance
  2. 2.Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICUBE)Université de Strasbourg (UdS)StrasbourgFrance

Personalised recommendations