Journal of Flow Chemistry

, Volume 4, Issue 2, pp 86–91 | Cite as

Tolerance of Water in Microfluidic Radiofluorinations: A Potential Methodological Shift?

  • Giancarlo Pascali
  • Mariarosaria De Simone
  • Lidia Matesic
  • Ivan Greguric
  • Piero A. Salvadori
Full Paper


Nucleophilic [18F]-fluorination reactions traditionally include a drying step of the labeling agent in order to achieve a successful substitution. This passage extends the time and complexity required for the whole radiotracer production, with increased hardware and detrimental effects on the radioactive recovery of such a short-lived (t½=109 min) isotope. Because the performance of radiofluorination reactions conducted under microfluidic flow conditions have been demonstrated to be more effective in terms of reaction time and yields, we have tested the tolerance to water present in this specific reaction condition, in view of eliminating the drying step in the process. To this purpose, we tested different substrates selected from typical radiofluorination intermediates. Our results show that water could be tolerated in a microfluidic environment; in particular, we observed a slight decrease in the labeling of aromatic precursors and a significant increase for iodonium salts, whereas the radiochemical yields of the other compounds studied were virtually unchanged. These findings may open the way to the possibility of simpler and faster processes for the production of new 18F-fluorinated positron emission tomography tracers.


microfluidics radiochemistry radiofluorination PET anhydrous water 


  1. 1.
    Lapi, S. E.; Welch M. J. Nucl. Med. Biol. 2012, 39, 601–608.CrossRefGoogle Scholar
  2. 2.
    Cai, L.; Lu, S.; Pike, V. Eur. J. Org. Chem. 2008, 6, 2853–2873.CrossRefGoogle Scholar
  3. 3.
    Kim, H. W.; Jeong, J. M.; Lee, Y. S.; Chi, D. Y.; Chung, K. H.; Lee, D. S.; Chung, J. K.; Lee M. C. Appl. Radiat. Isot. 2004, 61, 1241–1246.CrossRefGoogle Scholar
  4. 4.
    Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H.; Katzenellenbogen, J. A.; Chi, D. Y. J. Org. Chem. 2008, 73, 957–962.CrossRefGoogle Scholar
  5. 5.(a)
    Aerts, J.; Voccia, S.; Lemaire, C.; Giacomelli, F.; Goblet, D.; Thonon, D.; Plenevaux, A.; Warnock, G.; Luxen, A. Tetra. Lett. 2010, 51, 64–66CrossRefGoogle Scholar
  6. (b).
    Lemaire, C.; Aerts, J. J.; Voccia, S.; Libert, L. C.; Mercier, F.; Goblet, D.; Plenevaux, A. R.; Luxen, A. J. Angewandte Chemie. 2010, 49, 3161–3164CrossRefGoogle Scholar
  7. (c).
    Voccia, S.; Aerts, J.; Lemaire, C.; Luxen, A.; Morelle, J.-L.; Philippart, G. WO 2008/128306, 2008.Google Scholar
  8. 6.(a)
    Hamacher, K.; Coenen, H. H. Appl. Radiat. Isot. 2006, 64, 989–994CrossRefGoogle Scholar
  9. (b).
    Saiki, H.; Iwata, R.; Nakanishi, H.; Wong, R.; Ishikawa, Y.; Furumoto, S.; Yamahara, R.; Sakamoto, K.; Ozeki, E. Appl. Radiat. Isot. 2010, 68, 1703–1708CrossRefGoogle Scholar
  10. (c).
    Wong, R.; Iwata, R.; Saiki, H.; Furumoto, S.; Ishikawa, Y.; Ozeki, E. Appl Radiat Isot, 2012, 70, 193–199.CrossRefGoogle Scholar
  11. 7.(a)
    Telu, S.; Chun, J.; Simeon, H. F. G.; Lu, S.; Pike, V. W. Org. Biomol. Chem. 2011, 9, 6629–6638CrossRefGoogle Scholar
  12. (b).
    Neal, T. R.; Apana, S.; Berridge, M. S. J. Labelled Compd. Radiopharm. 2005, 48, 557–568CrossRefGoogle Scholar
  13. (c).
    Arima, V.; Pascali, G.; Lade, O.; Kretschmer, H. R.; Bernsdorf, I.; Hammond, V.; Watts, P.; De Leonardis, F.; Tarn, M. D.; Pamme, N. Lab. Chip. 2013, 13, 2328–2336CrossRefGoogle Scholar
  14. (d).
    Lang, L.; Eckelman, W. C. Appl. Radiat. Isot. 1994, 45, 1155–1163.CrossRefGoogle Scholar
  15. 8.(a)
    Pascali, G.; Pitzianti, S.; Del Carlo, S.; Saccomanni, G.; Manera, M.; Macchia, M.; Salvadori, P. A. J. Labelled Compd. Radiopharm. 2011, S502Google Scholar
  16. (b).
    Pascali, G.; Del Carlo, S.; Saccomanni, G.; Manera, C.; Macchia, M.; Salvadori, P. J. Nucl. Med. Meeting Abstracts 2012, 53, 578.Google Scholar
  17. 9.
    Watts, P.; Pascali, G.; Salvadori, P. A. J. Flow. Chem. 2012, 2, 37–42.CrossRefGoogle Scholar
  18. 10.
    Pascali, G.; Kiesewetter, D. O.; Salvadori, P. A.; Eckelman, W. C. J. Labelled Compd. Radiopharm. 2004, 47, 373–383.CrossRefGoogle Scholar
  19. 11.
    Pascali, G.; Mazzone, G.; Saccomanni, G.; Manera, C.; Salvadori, P. A. Nucl. Med. Biol. 2010, 37, 547–555.CrossRefGoogle Scholar
  20. 12.(a)
    Dahl, K.; Schou, M.; Halldin, C. J. Labelled Compd. Radiopharm. 2012, 55, 455–59CrossRefGoogle Scholar
  21. (b).
    Ungersboeck, J.; Philippe, C.; Mien, L. K.; Haeusler, D.; Shanab, K.; Lanzenberger, R.; Spreitzer, H.; Keppler, B. K.; Dudczak, R.; Kletter, K.; Mitterhauser, M.; Wadsak, W. Nucl. Med. Biol. 2011, 38, 427–34.CrossRefGoogle Scholar
  22. 13.
    Pearson, R.G. J. Am. Chem. Soc. 1963, 85, 3533–3539.CrossRefGoogle Scholar
  23. 14.
    Yusubov, M. S.; Svitich, D. Y.; Larkina, M. S.; Zhdankin, V. V. ARKVOC. 2013, 364–395.Google Scholar
  24. 15.
    Chun, J.-H.; Pike, V. W. Eur. J. Org. Chem. 2012, 24, 4541–4547.CrossRefGoogle Scholar
  25. 16.
    Matesic, L.; Wyatt, N. A.; Fraser, B. H.; Roberts, M. P.; Pham, T. Q.; Greguric, I. J. Org. Chem. 2013, 78, 11262–11270.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • Giancarlo Pascali
    • 1
    • 2
  • Mariarosaria De Simone
    • 1
  • Lidia Matesic
    • 2
  • Ivan Greguric
    • 2
  • Piero A. Salvadori
    • 1
  1. 1.Institute of Clinical PhysiologyCNRPisaItaly
  2. 2.LifeSciencesAustralian Nuclear Science and Technology OrganisationLucas HeightsAustralia

Personalised recommendations