Advertisement

Journal of Flow Chemistry

, Volume 4, Issue 2, pp 79–85 | Cite as

Chemistry of Carbon Nanotubes in Flow

  • Patrizio Salice
  • Emiliano Rossi
  • Alessandro Pace
  • Prasenjit Maity
  • Tommaso Carofiglio
  • Enzo Menna
  • Michele Maggini
Full Paper
  • 13 Downloads

Abstract

The covalent chemistry of carbon nanostructures has put forth a wide variety of interesting derivatives that widen their potential as functional materials. However, the synthetic procedures that have been developed to functionalize the nanostructures may require long reaction times and harsh conditions. In this paper, we study the continuous flow processing of single-wall carbon nanotubes with azomethine ylides and diazonium salts and demonstrate that this approach is effective to reduce reaction times and tune the properties of the functionalized carbon materials.

Keywords

nanotubes flow chemistry azomethine ylides diazonium salts cycloaddition 

Supplementary material

41981_2014_4020079_MOESM1_ESM.pdf (9.6 mb)
Supplementary material, approximately 10084 KB.

References

  1. 1.
    Sainsbury, T.; Erickson, K.; Okawa, D.; Zonte, C. S.; Frechet, J. M. J.; Zettl, A. Chem. Mater. 2010, 22, 2164–2171.CrossRefGoogle Scholar
  2. 2.
    Zhang, B.; Chen, Y.; Wang, J.; Blau, W. J.; Zhuang, X.; He, N. Carbon 2010, 48, 1738–1742.CrossRefGoogle Scholar
  3. 3.
    Bottini, M.; Cerignoli, F.; Dawson, M. I.; Magrini, A.; Rosato, N.; Mustelin, T. Biomacromolecules 2006, 7, 2259–2263.CrossRefGoogle Scholar
  4. 4.
    Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A.M.; Sun, Y.-P. Nano Lett. 2002, 2, 311–314.CrossRefGoogle Scholar
  5. 5.
    Kam, N. W. S.; Dai, H. J. Am. Chem. Soc. 2005, 127, 6021–6026.CrossRefGoogle Scholar
  6. 6.
    Yudasaka, M.; Zhang, M.; Iijima, S. Chem. Phys. Lett. 2003, 374, 132–136.CrossRefGoogle Scholar
  7. 7.
    Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519–1522.CrossRefGoogle Scholar
  8. 8.
    Kim, W.-J.; Usrey, M. L.; Strano, M. S. Chem. Mater. 2007, 19, 1571–1576.CrossRefGoogle Scholar
  9. 9.
    Kamaras, K.; Itkis, M. E.; Hu, H.; Zhao, B.; Haddon, R. C. Science 2003, 301, 1501.CrossRefGoogle Scholar
  10. 10.
    Britz, D. A.; Khlobystov, A. N.; Porfyrakis, K.; Ardavan, A.; Briggs, G. A. D. Chem. Commun. 2005, 37–39.Google Scholar
  11. 11.
    Gebhardt, B.; Graupner, R.; Hauke, F.; Hirsch, A. Eur. J. Org. Chem. 2010, 2010, 1494–1501.CrossRefGoogle Scholar
  12. 12.
    Ménard-Moyon, C.; Izard, N.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 6552–6553.CrossRefGoogle Scholar
  13. 13.
    Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760–761.CrossRefGoogle Scholar
  14. 14.(a)
    Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105–1136.CrossRefGoogle Scholar
  15. (b.)
    Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2009, 38, 2214–2230.CrossRefGoogle Scholar
  16. 15.
    Karousis, N.; Tagmatarchis, N.; Tasis, D. Chem. Rev. 2010, 110, 5366–5397.CrossRefGoogle Scholar
  17. 16.
    Ghini, G.; Luconi, L.; Rossin, A.; Bianchini, C.; Giambastiani, G.; Cicchi, S.; Lascialfari, L.; Brandi, A.; Giannasi, A. Chem. Commun. 2010, 46, 252–254.CrossRefGoogle Scholar
  18. 17.
    Vazquez, E.; Giacalone, F.; Prato, M. Chem. Soc. Rev. 2013, 43, 58–69.CrossRefGoogle Scholar
  19. 18.
    Bulusheva, L. G.; Fedoseeva, Y. V.; Okotrub, A. V.; Flahaut, E.; Asanov, P.; Koroteev, V. O.; Yaya, A.; Ewels, C. P.; Chuvilin, A. L.; Felten, A.; Van Lier, G.; Vyalikh, D. V. Chem. Mater. 2010, 22, 4197–4203.CrossRefGoogle Scholar
  20. 19.
    Salice, P.; Maity, P.; Rossi, E.; Carofiglio, T.; Menna, E.; Maggini, M. Chem. Commun. 2011, 47, 9092–9094. The concentration decreases along each fraction series as expected.CrossRefGoogle Scholar
  21. 20.
    Salice, P.; Fenaroli, D.; De Filippo, C. C.; Menna, E.; Gasparini, G.; Maggini, M. Chem. Today 2012, 30, 37–39.Google Scholar
  22. 21.
    Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 231–349.CrossRefGoogle Scholar
  23. 22.
    Harwood, L. M.; Vickers, R. J., Azomethine Ylides. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Vol. 5.; A. Padwa, W. H. Pearson Eds., John Wiley & Sons, Inc.: 2003; pp 169–252.CrossRefGoogle Scholar
  24. 23.
    Maggini, M.; Menna, E.; Carofiglio, T.; Rossi, E.; Pace, A.; Salice, P. Method for the synthesis of functionalised carbon nanotubes by cycloaddition under continuous flow conditions and apparatus fo the method. WO Patent 2,012,156,297: 2012.Google Scholar
  25. 24.
    Coleman, J. N. Adv. Funct. Mater. 2009, 19, 3680–3695.CrossRefGoogle Scholar
  26. 25.
    Rossi, E.; Carofiglio, T.; Venturi, A.; Ndobe, A.; Muccini, M.; Maggini, M. Energy Environ. Sci. 2011, 4, 725–727.CrossRefGoogle Scholar
  27. 26.
    Jeong, S. H.; Kim, K. K.; Jeong, S. J.; An, K. H.; Lee, S. H.; Lee, Y. H. Synth. Met. 2007, 157, 570–574.CrossRefGoogle Scholar
  28. 27.
    Wunderlich, D.; Hauke, F.; Hirsch, A. Chem. Eur. J. 2008, 14, 1607–1614.CrossRefGoogle Scholar
  29. 28.
    Schönfelder, R.; Avilés, F.; Bachmatiuk, A.; Cauich-Rodriguez, J. V.; Knupfer, M.; Büchner, B.; Rümmeli, M. H. Appl. Phys. A 2012, 106, 843–852.CrossRefGoogle Scholar
  30. 29.
    D’Este, M.; Nardi, M. D.; Menna, E. Eur. J. Org. Chem. 2006, 2006, 2517–2522.CrossRefGoogle Scholar
  31. 30.
    Georgakilas, V.; Voulgaris, D.; Vazquez, E.; Prato, M.; Guldi, D. M.; Kukovecz, A.; Kuzmany, H. J. Am. Chem. Soc. 2002, 124, 14318–14319.CrossRefGoogle Scholar
  32. 31.
    Brozena, A. H.; Moskowitz, J.; Shao, B.; Deng, S.; Liao, H.; Gaskell, K. J.; Wang, Y. J. Am. Chem. Soc. 2010, 132, 3932–3938.CrossRefGoogle Scholar
  33. 32.
    Allen, B. L.; Kichambare, P. D.; Gou, P.; Vlasova, I. I.; Kapralov, A. A.; Konduru, N.; Kagan, V. E.; Star, A. Nano Lett. 2008, 8, 3899–3903.CrossRefGoogle Scholar
  34. 33.
    Salice, P.; Maity, P.; Rossi, E.; Carofiglio, T.; Menna, E.; Maggini, M. Chem. Commun. 2011, 47, 9092–9094.CrossRefGoogle Scholar
  35. 34.
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  36. 35.
    Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Lett. 2010, 10, 751–758.CrossRefGoogle Scholar
  37. 36.
    Thomsen, C.; Reich, S. Light Scattering in Solid IX 2007, 115–234.Google Scholar
  38. 37.
    Graupner, R. J. Raman Spectrosc. 2007, 38, 673–683.CrossRefGoogle Scholar
  39. 38.
    Tuinstra, F.; Koenig, J. L. J. Phys. Chem. 1970, 53, 1126–1130.CrossRefGoogle Scholar
  40. 39.
    Müller, M.; Maultzsch, J.; Wunderlich, D.; Hirsch, A.; Thomsen, C. Phys. Status Solidi 2008, 24, 1957–1960.CrossRefGoogle Scholar
  41. 40.
    Geng, J.; Kong, B.-S.; Yang, S. B.; Youn, S. C.; Park, S.; Joo, T.; Jung, H.-T. Adv. Funct. Mat. 2008, 18, 2659–2665.CrossRefGoogle Scholar
  42. 41.
    Salice, P.; Mauri, M.; Castellino, M.; De Marco, M.; Bianchi, A.; Virga, A.; Tagliaferro, A.; Simonutti, R.; Menna, E. Chem. Commun. 2013, 49, 8048–8050.CrossRefGoogle Scholar
  43. 42.
    Cataldo, S.; Salice, P.; Menna, E.; Pignataro, B. Energy Environ. Sci. 2012, 5, 5919–5940.CrossRefGoogle Scholar
  44. 43.
    Beaulieu, P. L.; Gillard, J.; Bailey, M. D.; Boucher, C.; Duceppe, J.-S.; Simoneau, B.; Wang, X.-J.; Zhang, L.; Grozinger, K.; Houpis, I. J. Org. Chem. 2005, 70, 5869–5879.CrossRefGoogle Scholar
  45. 44.
    Luisi, R.; Capriati, V.; Florio, S.; Musio, B. Org. Lett. 2007, 9, 1263–1266.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • Patrizio Salice
    • 1
  • Emiliano Rossi
    • 1
  • Alessandro Pace
    • 1
  • Prasenjit Maity
    • 1
  • Tommaso Carofiglio
    • 1
  • Enzo Menna
    • 1
  • Michele Maggini
    • 1
  1. 1.Dipartimento di Scienze ChimicheUniversità di PadovaPadovaItaly

Personalised recommendations