Journal of Flow Chemistry

, Volume 4, Issue 2, pp 72–78 | Cite as

Continuous-Microflow Synthesis and Morphological Characterization of Multiscale Composite Materials Based on Polymer Microparticles and Inorganic Nanoparticles

  • Isabelle Kraus
  • Shuning Li
  • Andrea Knauer
  • Marc Schmutz
  • Jacques Faerber
  • Christophe A. Serra
  • Michael Köhler
Full Paper


This paper presents a new route to the synthesis of uniform and size-controlled inorganic/organic composite microparticles by means of microreaction technology. Au-nanoparticles in the range of 3 to 14 nm are synthesized by reduction of tetrachloroauric acid, while ZnO-nanoparticles (200–2000 nm) are synthesized in a continuous-flow twostep process using microtube arrangements for microsegmented flow. Both inorganic nanoparticles have a wellcontrolled size and narrow size distribution. Upon surface modification, the nanoparticles are then mixed on one hand with an acrylate-based monomer and, on the other hand, with an aqueous solution of acrylamide. Both solutions were then emulsified into uniform core-shell droplets by means of a capillary-based microfluidic device. Droplet’s shell was hardened through UV-induced polymerization, whereas the core led to a hydrogel upon thermal-induced polymerization. Core-shell polymer microparticles (200–300 μm) with inorganic nanoparticles selectively incorporated into the core and the shell are thus obtained as proven by extensive morphological characterizations using electronic and optical microscopies.


inorganic nanoparticle polymer microparticle composite microreaction technology microfluidics microscopy 


  1. 1.
    Chang, Z.; Serra, C. A.; Bouquey, M.; Kraus, I.; Li, S.; Köhler, J. M. Nanotechnology, 2010, 21, 015605.CrossRefGoogle Scholar
  2. 2.
    Cottam, B. F.; Krishnadasan, S.; DeMello, A. J.; DeMello, J. C.; Shaffer, M. S. P. Lab. Chip. 2007 167–169Google Scholar
  3. 3.
    Donnet, M.; Jongen, N.; Lemaitre, J.; Bowen, P. J. Mat Sci. Lett. 2000, 19, 749–750.CrossRefGoogle Scholar
  4. 4.
    Guillemet-Fritsch, S.; Aoun-Habbache, S.; Sarrias, J.; Rousset, A.; Jongen, N..; Donnet, M.; Bowen, P.; Lemaitre J. Solid State Ionics 2004, 171, 135–140.CrossRefGoogle Scholar
  5. 5.
    Winterton, J. D.; Myers, D. R.; Lippmann, J. M.; Pisano, A. P.; Doyle, F. M. J. Nanopart. Res. 2008, 10, 893–905.CrossRefGoogle Scholar
  6. 6.
    Wagner, J.; Köhler, J. M. Nano Lett. 2005, 5, 685–691CrossRefGoogle Scholar
  7. 7.
    Weng, C.-H.; Huang, C.-C.; Yeh, C.-S.; Lei, H-Y.; Lee, G.-B. J. Micromech. Microengn. 2008, 18, 035019.CrossRefGoogle Scholar
  8. 8.
    Cabeza, V. S.; Kuhn, S.; Kulkarni, A. A.; Jensen, K. F. Langmuir 2012, 28, 7007–7013.CrossRefGoogle Scholar
  9. 9.
    Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csaki, A.; Fritzsche, W.; Köhler, J. M. Chem. Eng. J. 2011, 116, 1164–1169.CrossRefGoogle Scholar
  10. 10.
    Knauer, A.; Csaki, A.; Möller, F.; Hühn, C.; Fritzsche, W.; Köhler, J. M. J. Phys. Chem. 2012, 116, 9251–9258.Google Scholar
  11. 11.
    Gross, G. A.; Hamann, C.; Günther, M.; Köhler, J. M. Chem. Eng. Technol. 2007, 30, 341–346.CrossRefGoogle Scholar
  12. 12.
    Köhler, J. M.; Kraus, I.; Faerber, J.; Serra, Ch. J. Mat. Sci. 2013, 48, 2158–2166.CrossRefGoogle Scholar
  13. 13.
    Köhler, J. M.; März, A.; Popp, J.; Knauer, A.; Kraus, I.; Faerber, J.; Serra, C. Anal. Chem. 2013, 85, 313–318.CrossRefGoogle Scholar
  14. 14.
    Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. 1999, B103, 3529–3533.CrossRefGoogle Scholar
  15. 15.
    Moskovits, M.; Smova-Sloufova, I.; Vlckovâ, B. J. Chem. Phys. 2002, 116, 10435–10446.CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Gonzâlez, B.; Burrows, A.; Wanatabe, M.; Kiely, C. J.; Liz Marzan, L. M. J. Mat. Chem. 2005, 15, 1755–1759.CrossRefGoogle Scholar
  17. 17.
    Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A. P. Lab Chip 2008, 8, 198–220.CrossRefGoogle Scholar
  18. 18.
    Aoki, N.; Mae, K. Chem. Eng. J. 2006, 118, 189–197.CrossRefGoogle Scholar
  19. 19.
    Köhler, J. M.; Held, M.; Hübner, U.; Wagner, J. Chem. Eng. Tech. 2007, 30, 347–354.CrossRefGoogle Scholar
  20. 20.
    Li, S.; Günther, P. M.; Köhler, J. M. J. Chem. Eng. 2009, 42, 338–345.CrossRefGoogle Scholar
  21. 21.
    Serra, C.; Chang, Z. Chem. Eng. Tech. 2008, 31, 1099–1115.CrossRefGoogle Scholar
  22. 22.
    Serra, C.; Berton, N.; Bouquey, M.; Prat, L.; Hadziioannou, G. Langmuir 2007, 23, 7745–7750.CrossRefGoogle Scholar
  23. 23.
    Sawyer, L. C.; Grubb, D. T. Polymer microscopy; Chapman and Hall, London, UK, 1996.CrossRefGoogle Scholar
  24. 24.
    Jönsson, J.-E.; Karlsson, O. J.; Hassender, H.; Törnell, B. Eur. Poly. J. 2007, 43, 1322–1332.CrossRefGoogle Scholar
  25. 25.
    Kirner, T.; Albert, J.; Günther, M.; Mayer, G.; Reinhäckel, K.; Köhler, J. M. Chem. Eng. J. 2004, 101, 65–74.CrossRefGoogle Scholar
  26. 26.
    Köhler, J. M.; Wagner, J.; Albert, J. J. Mat. Chem. 2005, 15, 1924–1930.CrossRefGoogle Scholar
  27. 27.
    Polte, J.; Ahner, T.; Delissen, F.; et al. J. Am. Chem. Soc. 2010, 132, 1296–1301CrossRefGoogle Scholar
  28. 28.
    Li, S.; Meierott, S.; Köhler, J. M. Chem. Eng. J. 2010, 165, 958–965.CrossRefGoogle Scholar
  29. 29.
    Köhler, J. M.; Li, S.; Knauer, A. Chem. Eng. Technol. 2013, 36, 887–899.CrossRefGoogle Scholar
  30. 30.
    Chang, Z.; Serra, C.; Bouquey, M.; Prat, L.; Hadziioannou, G. Lab. Chip. 2009, 9, 3007–3011.CrossRefGoogle Scholar
  31. 31.
    Yobas, L.; Martens, S.; Ong, W. L.; Ranganathan, N. Lab. Chip. 2006, 6, 1073–1079.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2014

Authors and Affiliations

  • Isabelle Kraus
    • 1
  • Shuning Li
    • 2
  • Andrea Knauer
    • 2
  • Marc Schmutz
    • 3
  • Jacques Faerber
    • 1
  • Christophe A. Serra
    • 4
  • Michael Köhler
    • 2
  1. 1.Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)Université de Strasbourg, CNRS UMR 7504Strasbourg 2France
  2. 2.Department of Physical Chemistry and Microreaction Technology, Institute of PhysicsTechnical University of IlmenauIlmenauGermany
  3. 3.Institut Charles Sadron (ICS), CNRS UPR 22Université de StrasbourgStrasbourgFrance
  4. 4.Groupe d’Intensification et d’Intégration des Procédés Polymères (G2IP), Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES)-UMR 7515 CNRS, École Européenne de Chimie, Polymères et Matériaux (ECPM)Université de StrasbourgStrasbourgFrance

Personalised recommendations