Journal of Flow Chemistry

, Volume 4, Issue 2, pp 61–65 | Cite as

Novel Compact Mesh Structure Micromixer with Multiple Outlets for Generation of Concentration Gradients

  • Omar Pandoli
  • Tommaso Del Rosso
  • Ricardo Queiroz Aucélio
  • Alessandro Massi
  • Chen Xiang
  • Shu-Ren Hysing


A novel micromixer concept for generation of concentration gradients, inspired by a Chinese design, the traditional Chinese knot “中国结,” which features a core mesh structure allowing for a very compact design, is presented. The new concept has been designed using modern computer-aided design (CAD) and computational fluid dynamics (CFD) simulation software and validated by performing multiple experiments. The final design is found to be significantly more compact than conventional ones and allows the use of up to 15 outlet channels.


microfluidic concentration gradient serial dilution fluid dynamics microdevice 

Supplementary material

41981_2014_4020061_MOESM1_ESM.pdf (279 kb)
Supplementary material, approximately 286 KB.


  1. 1.(a)
    O’Neill, A. T.; Monteiro-Riviere, N.; Walker, G. M. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1, 2836–2839Google Scholar
  2. (b).
    Cimetta, E.; Cannizzaro, C.; James, C.; Biechele, T.; Nicola Elvassore, N.; Vunjak-Novakovic, G. Lab Chip 2010, 10, 3277–3283CrossRefGoogle Scholar
  3. (c).
    Wu, M. H.; Huang, S. B.; Lee, G. B. Lab Chip 2010, 8, 939–956CrossRefGoogle Scholar
  4. (d).
    Upadhaya, S.; Selvaganapathy, P. R. Crit. Rev. Biomed. Eng. 2009, 3, 193–257CrossRefGoogle Scholar
  5. (e).
    Chia-Hsien, Y.; Chien-Hsien, C.; Yu-Cheng, L. Microfluid. Nanofluid. 2011, 10, 1011–1018.CrossRefGoogle Scholar
  6. 2.(a)
    Choong, K.; Kangsun, L.; Jong, H. K.; Kyeong, S. S.; Kyu-Jung, L.; Tae Song, K.; Ji, Y. K. Lab Chip 2008, 8, 473–479CrossRefGoogle Scholar
  7. (b).
    Dertinger, S. K. W.; Chiu, D. C.; Jeon, N. L.; M. Whitesides, G. M. Anal. Chem. 2001, 73, 1240–1246.CrossRefGoogle Scholar
  8. 3.
    Yang, C. G.; Xu, Z. R.; Lee, A. P.; Wang, J. H. Lab Chip 2013, 13, 2815–2820.CrossRefGoogle Scholar
  9. 4.
    Khademhosseini, A.; Selimovi, S.; Sim, W. Y.; Kim, S. B.; Jang, Y. H.; Lee, W. G. Anal. Chem. 2011, 83, 2020–2028.CrossRefGoogle Scholar
  10. 5.
    Whitesides, G. M.; Jeon, N. L.; Dertinger, S. K.; Chiu, D. T.; Choi, I. S.; Stroock, A. D. Langmuir 2000, 16, 8311–8316.CrossRefGoogle Scholar
  11. 6.
    Cremer, P. S.; Holden, M. A.; Kumar, S.; Castellana, E. T.; Beskok, A. Sens. Actuators, B 2003, 92, 199–207.CrossRefGoogle Scholar
  12. 7.
    Koji, H.; Shinji, S.; Toshiyuki, K. Lab Chip 2009, 9, 1763–1772.CrossRefGoogle Scholar
  13. 8.
    Smith, R. L.; Demers, C. J.; Collins, S. D. Microfluid. Nanofluid. 2010, 9, 613–622.CrossRefGoogle Scholar
  14. 9.
    Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal. Chem. 1998, 70, 4974–4984.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Omar Pandoli
    • 1
    • 2
  • Tommaso Del Rosso
    • 3
  • Ricardo Queiroz Aucélio
    • 1
  • Alessandro Massi
    • 4
  • Chen Xiang
    • 2
  • Shu-Ren Hysing
    • 5
  1. 1.Department of ChemistryUniversidade Pontificia CatolicaRio de JaneiroBrazil
  2. 2.Department of Bio-Nano EngineeringShanghai Jiaotong UniversityShanghaiChina
  3. 3.Department of PhysicsUniversidade Pontificia CatolicaRio de JaneiroBrazil
  4. 4.Department of ChemistryUniversità di FerraraItaly
  5. 5.Department of MathematicsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations